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Section 7: Electromagnetic Radiation 

7.1 Radiation 

We discussed the propagation of plane electromagnetic waves through various media, but we were not 

interested in a way of how the waves were generated. Like all electromagnetic fields, their source is some 

arrangement of electric charge. But a charge at rest does not generate electromagnetic waves; nor does a 

steady current. The waves are due to accelerating charges, and changing currents. Here we consider how 

such charges and currents produce electromagnetic waves – that is, how they radiate. 

The signature of radiation is irreversible flow of energy away from the source. We assume that the source 

is localized near the origin. If we now imagine a gigantic spherical shell, out at radius r, the total power 

passing out through this surface is the integral of Poynting’s vector: 
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The power radiated is the limit of this quantity as r goes to infinity. This is the energy (per unit time) that 

is transported out to infinity, and never comes back. Now, the area of the sphere is 4r2, so for radiation 

to occur Poynting’s vector must decrease (at large r) no faster than 1/r2 (if it went like 1/r3, for example, 

then P(r) would go like 1/r, and P would be zero).  According to Coulomb's law, electrostatic fields fall 

off like 1/r2 (or even faster, if the total charge is zero), and the Biot-Savart law says that magnetostatic 

fields go like 1/r2 (or faster), which means that S ~ 1/r4, for static configurations. So static sources do not 

radiate. But Jefimenko's equations indicate that time-dependent fields include terms that go like 1/r; it is 

these terms that are responsible for electromagnetic radiation. 

The study of radiation, then, involves picking out the parts of E and B that go like 1/r at large distances 

from the source, constructing from them the 1/r2 term in S, integrating over a large spherical surface, and 

taking the limit as r → .  

We consider a general situation, in which electromagnetic radiation is produced by an arbitrary 

distribution of charges and currents, with an arbitrary time dependence (not necessarily oscillating with a 

single frequency ). Our only restrictions are that 

(i) the source is confined to a bounded region V of space, 

(ii) the charges are moving slowly. 

These conditions will allow us to formulate useful approximations for the behavior of the electric and 

magnetic fields.  

To make the slow-motion approximation precise and to define different electromagnetic field zones, we 

introduce the following scaling quantities: 

 rs  –   characteristic length scale of the charge and current distribution,  

 ts   –   characteristic time scale over which the distribution changes, 

s
s

s

r

t
=v   –   characteristic velocity of the charge motion in the source, 

2
s

st


 =    –   characteristic frequency of the charge motion in the source, 

2
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c
ct





= =   –   characteristic wavelength of radiation.  
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The characteristic length scale is defined such that the distribution of charge and current is localized 

within a region whose volume is of the order of 3

sr . The characteristic time scale is defined such that 

/ t   is of order / st  throughout the source.  

The slow-motion approximation means that /s s sr t=v  is much smaller than the speed of light: 

 
s cv . (7.2) 

This condition gives us 
s = s s s sr t ct =v , or 

 
s sr  . (7.3) 

The source is therefore confined to a region that is much smaller than a typical wavelength of the 

radiation. 

There are three spatial regions of interest:  

The near (static) zone: 
sr  . (7.4) 

The intermediate (induction) zone: 
sr sr  . (7.5) 

The far (radiation) zone: 
s sr r . (7.6) 

We will see that the fields have very different properties in these zones. In the near zone the fields have 

the character of static fields, with radial components and variation with the distance that depend in detail 

on the properties of the source. In the far zone, on the other hand, the fields are transverse to the radius 

vector and fall of as 1/r which is typical for radiation fields. We will compute the potentials and fields in 

the near and far zones. 

7.2 Electric dipole radiation 

We begin by calculating the scalar potential, 
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where V is the region of space occupied by the source and /rt t c= − −r r  is the retarded time. In the 

near zone, we can treat / c−r r  as a small quantity and Taylor-expand the charge density about the 

current time t. We have 
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where an overdot indicates differentiation with respect to t. Relative to the first term, the second term is of 

order /( ) /s sr ct r = ,  and by virtue of Eq. (7.4), this is small in the near zone. The third term would be 

smaller still, and we neglect it. We then have 
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The second term vanishes, because it involves the time derivative of the total charge 3( , )
V

t d r   r   which 

is conserved. We have therefore obtained 
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We see that the near-zone potential is similar to its usual static expression, except the fact that charge 

density depends on time. The time delay between the source and the potential has disappeared, and what 

we have is a potential that adjusts instantaneously to the changes within the distribution. The electric field 

it produces is then a “time-changing electrostatic field”. This near-zone field does not behave as radiation. 

To witness radiative effects, we must go to the radiation zone. Here −r r  is large and we can no longer 

Taylor-expand the density as we did previously. Instead, we must introduce another approximation 

technique. We use the fact that in the induction zone, r is much larger than r', so that 

 ˆ ...r − = −  +r r r r . (7.11) 

This gives 
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where we defined retarded time at the origin 
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Let us now Taylor-expand the charge density about the retarded time t0 instead of the current time t. We 

have 
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where an overdot now indicates differentiation with respect to t0.    

Inside the integral for , we approximate  
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It is sufficient to keep only the leading term 1/r because the higher order terms do not contribute to 

radiation. The radiation zone potential is therefore 
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In the first integral we recognize the total charge of the distribution: 

 3

0( , )
V

q t d r  =  r . (7.17) 

It is independent of t0 by virtue of charge conservation. In the second integral we recognize the dipole 

moment vector of the charge distribution: 
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This does depend on retarded time t0 because the charge density is time dependent. Our final expression 

for the potential is therefore 
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The first term on the right-hand side of Eq. (7.19) in the static, monopole potential associated with the 

total charge q. This term does not depend on time and is not associated with the propagation of radiation; 

we shall simply omit it in later calculations. The second term, on the other hand, is radiative: it depends 

on retarded time t0 and decays as 1/r. We see that the radiative part of the scalar potential is produced by a 

time-changing dipole moment of the charge distribution; it is nonzero whenever dp/dt is nonzero.  

An exact expression for the vector potential is  
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In the near zone, we approximate the current density as follows 

 ( , ) ( , )rt t J r J r , (7.21) 

and we obtain 
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We see that here the vector potential takes its static form. The potential responds virtually instantaneously 

to changes in the distribution, and there are no radiative effects in the near zone.  

In the radiation zone, we have instead 
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For now, we will keep only the first term in this equation, then 
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In static situations, the volume integral of J vanishes. But here the current density depends on time, and 

we have instead 

 
3

0 0( , ) ( )t d r t  J r = p . (7.25) 

To prove this, we write the i component of ( )tp  as follows 
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Here, we took into account the continuity equation, / t  = −J , and the fact that no current is 

crossing surface S bounding volume V. The vector potential is therefore 
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This has the structure of a spherical wave, and we see that the radiative part of the vector potential is 

produced by a time-changing dipole moment.  

The potentials  
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are generated by time variations of the dipole moment vector p of the charge and current distribution.  

They therefore give rise to electric-dipole radiation, the leading-order contribution, in our slow-motion 

approximation, to the radiation emitted by an arbitrary source. We now compute the electric and magnetic 

fields in this approximation. 

To obtain the electric field we keep only those terms that decay as 1/r, and neglect terms that decay faster. 

For example, when computing the gradient of the scalar potential we can neglect 1 2ˆ /r r− =−r so that 
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The electric field is then 
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Notice that the radiation-zone electric field behaves as a spherical wave, and that it is transverse to r̂ , the 

direction in which the wave propagates. 

To get the magnetic field we need to compute ( , )tA r . Similar to (7.30), we can write 

  0 0
0 0

ˆ( , ) ( , ) ( ) ( )
4 4

t t t t
r rc

 

 
=   = − B r A r p r p . (7.32) 

This latter equality can be seen from    
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Notice that the radiation-zone magnetic field behaves as a spherical wave, and that it is orthogonal to both 

r̂  and the electric field. Notice finally that the fields are in phase – they both depend on p  and are related 

as follows 

 ( )ˆc= E B r . (7.34) 

so that their magnitudes are |B|/|E| = 1/c.  

7.3 Energy radiated 

Poynting’s vector is  
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c B B

   
 =  =     = −  =   S E B B r B r B r B r . (7.35) 
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The fact that Poynting’s vector is directed along r̂  indicates that the electromagnetic field energy travels 

along with the wave. 

The energy crossing a sphere of radius r per unit time is given by P da=  S n , where 2 ˆda r d= n r  and 

sind d d  = . Substituting Eqs. (7.35) and (7.32)  yields 
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To evaluate the integral, we use the trick of momentarily aligning the z axis with the instantaneous 

direction of p  – we must do this for each particular value of t0. Then ˆ | | sin =r p p  and 
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This is the total power radiated by a slowly-moving distribution of charge and current. The angular 

distribution of power is described by 
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Example: Center-fed linear antenna 

 

 

 

 

 

  

Fig. 7.1   Center-fed linear antenna. The oscillating current is provided 

by a coaxial feed. 

 

As an example of a radiating system, we consider a thin wire of total length 2l which is fed an oscillating 

current through a small gap at its midpoint.  The wire runs along the z axis, from z = –l to z = l, and the 

gap is located at z = 0 (Fig. 7.1). For such antennas, the current typically oscillates both in time and in 

space, and it is usually represented by 

 ˆ( , ) sin ( ) ( ) ( ) cosmt I k l z x y t   = − J r z , (7.39) 

where /k c= . The current is an even function of z (it is the same in both arms of the antenna) and it 

goes to zero at both ends (at z = ±l). The amplitude of the current in the gap (at z = 0) is 0 sin( )mI I kl= . 

We want to calculate the total power radiated by this antenna, using the electric-dipole approximation. To 

be consistent, we must ensure that s cv  for this current distribution, that is s 2 /sl r k   . In other 

words, we must demand that 1kl , which means that k z  is small throughout the antenna. We can 

therefore approximate sin ( )k l z −   by ( )k l z−  and Eq. (7.39) becomes 
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0

ˆ( , ) (1 / ) ( ) ( ) cost I z l x y t  = −J r z , (7.40) 

where 
0 mI I kl=  is the value of the current at the gap. In this approximation, the current no longer 

oscillates in space: it simply goes from its peak value I0 at the gap to zero at the two ends of the wire.  

To compute the power radiated by our simplified antenna, we first need to calculate p(t), the second time 

derivative of the dipole moment vector. For this it is efficient to turn to Eq. (7.25), 

 3( ) ( , )t t d r= p J r , (7.41) 

in which we substitute Eq. (7.40). We then have 

 0
ˆ( ) cos (1 / )

l

l

t I t z l dz
−

= −p z . (7.42) 

Evaluating the integral gives 

 
0

ˆ( ) cost I l t= −p z . (7.43) 

Taking the second derivative yields  

 ( )( )0 0
ˆ ˆ( ) sin sint I l t I c kl t  = =p z z . (7.44) 

By introducing a vector  between r̂  and ẑ , we find for the angular distribution of the power 
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After averaging over a complete wave cycle, this reduces to 
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To obtain the total power radiated we must integrate over the angles. Using 2sin 8 / 3d  = , we arrive 

at our final result: 
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20

0
12

c
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= . (7.47) 

For a fixed frequency ,  the power increases like the square of the feed current 
0I . For a fixed current, 

the power increases like the square of the frequency, so long as the condition 1kl  is satisfied. From Eq. 

(7.46) we learn that most of the energy is radiated in the directions perpendicular to the antenna; none of 

the energy propagates along the axis. 

7.4 Magnetic dipole and electric quadrupole radiation 

Electric-dipole radiation corresponds to the leading order approximation of the electromagnetic field in 

the in an expansion in powers of /s cv , where 
sv  is a typical internal velocity of charges in the source. In 

some cases, however, the electric dipole moment p either vanishes or does not depend on time, and the 

leading term is actually zero. In such cases, we need to compute the next term in the expansion. We will 

see that in this case the electromagnetic radiation is determined by the magnetic dipole moment m or/and 

the electric quadrupole moment tensor Qij. These quantities are defined as follows: 

 3( ) ( , )
V
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 8 

 31
( ) ( , )

2
V

t t d r  = m r J r , (7.49) 

 ( )2 3( ) ( , ) 3ij i j ij

V

Q t t x x r d r     = − r , (7.50) 

where V is the volume that contains the charge and current distributions; this volume is bounded by the 

surface S.  

To make calculations more efficient, we first derive a few useful results. We can anticipate that in the 

radiation zone the potentials will have the form of a spherical wave. For example, the vector potential is 

given by  
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w r
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where 
0 /t t r c= −  and w is a vector that will be determined. We will not need the expression for the 

scalar potential: as we will see, in the radiation zone E can be directly obtained from B that will allows us 

to calculate the radiated power. 

Given the form of the vector potential, its curl is 
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Here we neglected the terms of the order of 1/r2 (these terms come from the gradient of 1/r and from the 

explicit dependence of w on r̂ ).  

In order to find the electric field, we go back to the Maxwell’s equation: 
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E
B J . (7.53) 

Since the current density vanishes outside the volume V, we have 0=J  in the radiation zone, and 

therefore  

 ( )
( )2 0 0 0
ˆ ˆˆ ˆ

4 4 4

c c
c

t r r r

  

  

   
=  == −      − 

  

r w rE r w r
B w . (7.54) 

Integrating with respect to t gives 
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Note that the constant of integration can be neglected because it is time-independent and therefore does 

not contribute to electromagnetic radiation. Poynting’s vector is therefore  
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Evaluating this on a sphere of constant radius r results in  
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where sind d d  =  is an element of the solid angle. Eq. (7.58) gives the angular distribution of the 

radiation power, which is controlled by the dependence of w on the radial vector r̂ .  Notice that the fields 

and the radiation’s angular profile depend only on ˆ r w , and that they are insensitive to the component 

of w along  r̂ . 

From there results we infer that irrespective to the exact expression for w, the electric and magnetic fields 

are transverse and mutually orthogonal, that their amplitudes differ by a factor of c, that they are in phase, 

and that the field energy travels in the radiation direction. 

Vector potential in the radiation zone 

We are now ready to calculate vector w. We start from an exact expression for the vector potential  
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In this we substitute approximations: 
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where 
0 /t t r c= −  is the retarded time at the origin. By expanding the current density in Taylor series, we 

find in the radiation zone 
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Relative to the leading term, the second term is smaller by a factor of order of / ( ) /s s sct c= vr . This term 

was neglected in our discussion of electric dipole radiation, but we will keep it now. Substituting the 

expansion for J into Eq. (7.59) gives 
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We have shown earlier (Eq. (7.25)) that  

 3( ) ( , )t t d r= p J r . (7.64) 

It is shown in Appendix that  
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Here the vector 0
ˆ( , )tQ r  defined by  

 0 0
ˆ ˆ( , ) ( )i ij j

j

Q t Q t x=r , (7.66) 

where ˆ /j jx x r  are the components of the unit vector ˆ / r=r r .  The quantity in the square brackets of 
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Eq. (7.63) defines the vector w. Using Eqs. (7.64) and (7.65), we therefore have 

 
2

2 3

0 0 0 0 02

0

1 1 1
ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , ) ( , )

6 6

d
t t t t t r d r

c c dt


 
  = +  + + 

 
w r p m r Q r r r . (7.67) 

The last term here is proportional to r̂ . But we have seen that the electric and magnetic fields, as well as 

the radiated power, depend only on ˆ r w . This means that we can ignore the last term in our expression 

for w so that 
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The first term on the right-hand side of Eq. (7.68) gives rise to electric-dipole radiation; this is the leading 

term in the expansion of the fields in powers of /s cv . The second and third terms give rise to magnetic-

dipole radiation and electric-quadrupole radiation, respectively; these contribute at order /s cv  beyond 

the leading term. To calculate the radiated power, we need 
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The term which is responsible for magnetic dipole radiation is  
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According to Eq. (7.58) the radiated power per solid angle is  
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Integrating over the solid angle gives the total radiated magnetic-dipole power: 
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One might compare this result with the electric-dipole power: 
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In orders of magnitude, we have the electric dipole moment ( ) 3 4~ ~s s sp r r r   and 
4 2~ /s sp r t . On the 

other hand, ( ) 3 4
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Thus, for slowing-moving sources, the power emitted in magnetic-dipole radiation is smaller than the 

power emitted in electric-dipole radiation by a factor of order 
2

s( / )cv . 
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For electric quadrupole radiation:  
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and the radiated power per solid angle is  
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It can be represented in a different way. Taking into account that 
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   = −      
Q r Q . (7.79) 

The latter equation can be written as follows 

 0

3

. .

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
144

i j ij i j ik jl ij k l i j k l

ij ijklel quard

dP
Q Q x x Q Q x x x x x x

d c


 



 
   = − = −      

  . (7.80) 

where ˆ /j jx x r  are components of the unit vector r̂  and we used relationship ˆ ˆ( , ) ( )i ij j

j

Q t Q t x=r . 

Integrating over solid angle and taking into account that 

 
4

ˆ ˆ
3

i j ijx x d

 =  (7.81) 

and 

 ( )
4

ˆ ˆ ˆ ˆ
15

i j k l ij kl ik jl il jkx x x x d


      = + + , (7.82) 

we find  

 

( )0
. . 3

0 0

3 3

1 1

144 3 15

1 1 1
.

144 3 15 144 5

el quard ik jl ij kl ij kl ik jl il jk

ijkl

ik ik ik ik ii jj ij ji ik ik

ik ik ij ij ik

P Q Q
c

Q Q Q Q Q Q Q Q Q Q
c c


       



 

 

 
= − + + = 

 

    
= − + + =    

    



    

 (7.83) 

Here we used the property that Qij is symmetric traceless tensor so that ij jiQ Q=  and 0ii

i

Q = . Our final 

result for the electric-quadrupole radiated power is  

 0

3720
electric quadrupole ik ik

ik

P Q Q
c




=  . (7.84) 

In orders of magnitude ( )2 3 5~ ~s s sQ r r r  , 5 3~ / ~ / ~s s s s s s sQ r t p r t p v  and therefore 

 

2

s~
electric quadrupole

electric dipole

P

P c

 
 
 

v
. (7.85) 

Thus, for slowing-moving distributions, the power emitted in electric-quadrupole radiation is smaller than 
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the power emitted in electric-dipole radiation by a factor of order 2( / ) 1cv . We see also that electric-

quadrupole radiation is of the same order of magnitude as magnetic-dipole radiation. 

Example: A simple radiating quadrupole source is an oscillating “spheroidal” distribution of charge such 

that p = 0 and  

 

0

0

0

½ 0 0

( ) 0 ½ 0 cos

0 0

Q

Q t Q t

Q



− 
 

= − 
 
 

. (7.86) 

The radiated power per solid angle is given by eq. (7.79) which is  

 ( )
22

0
0 02 3

ˆ ˆ ˆ( , ) ( , )
576

dP
t t

d c




 = − 
  

Q r r Q r . (7.87) 

In this case 

        0 0 0 0 0 0 0
ˆ ˆ ˆ ˆ( , ) ½ , ½ , cos ½sin cos , ½sin sin ,cos cost Q x Q y Q z t Q t      = − − = − −Q r , (7.88) 

      3

0 0 0
ˆ( , ) ½sin cos , ½sin sin ,cos sint Q t      = − −Q r , (7.89) 

     
2

6 2 2 2 2

0 0

1
sin cos sin

4
Q t   

 
= + 

 
Q ,  (7.90) 

     ( ) ( )
2 2

6 2 2 2 2

0 0
ˆ ½sin cos sinQ t    = − +r Q ,  (7.91) 

     ( )
22

6 2 2 2 2

0 0

9
ˆ cos sin sin

4
Q t    −  =

  
Q r Q .  (7.92) 

The radiated power per solid angle is in this case  

 
6 2

2 2 20 0
02 3

cos sin sin
256

QdP
t

d c

 
  


=


. (7.93) 

After averaging over a complete wave cycle, this reduces to 

 
6 2

2 20 0

2 3
cos sin

512

QdP

d c

 
 


=


. (7.94) 

This a four-lobed pattern with maxima at / 4 =  and 3 / 4 = . The total radiated power by this 

quadrupole is   

 
6 2

0 0

3960

Q
P

c

 


= . (7.95) 

7.5 Power radiated by a point charge 

In Section 6 (Eqs. 6.136) and (6.140), we derived the fields of a point charge q in arbitrary motion 

 
( )

( ) ( )2 2

3

0

( , )
4

q
t c




 = − +  
 

E r u ξ u a
ξ u

v , (7.96) 

where ˆc −u ξ v  and ( )rt −ξ r w , and  

 
1 ˆ( , ) ( , )t t
c

= B r ξ E r . (7.97) 

The first term in Eq. (7.96) is the velocity field, and the second one is the acceleration field.  



 13 

Poynting’s vector is  

 ( ) ( )2

0 0 0

1 1 1ˆ ˆ ˆE
c c  

 
=  =   = −  

 
S E B E ξ E ξ ξ E E . (7.98) 

However, not all of this energy flux constitutes radiation; some of it is just field energy carried along by 

the particle as it moves. The radiated energy detaches itself from the charge and propagates off to 

infinity. To calculate the total power radiated by the particle at time tr, we consider a huge sphere of 

radius ξ (Fig. 7.2), centered at the position of the particle (at time tr), wait the appropriate interval 

/rt t c− =  for the radiation to reach the sphere, and at that moment integrate Poynting’s vector over the 

surface.  

ξ

Fig. 7.2 

Now, the area of the sphere is proportional to ξ2, so any term in S that goes like 1/ξ2 will yield a finite 

result, but terms ~1/ξ3 or 1/ξ4 will contribute nothing in the limit ξ → ∞. For this reason, only the 

acceleration field represent true radiation and hence it is also known as radiation field: 

 
( )

( )3

04
rad

q 


=     


E ξ u a

ξ u
. (7.99) 

Now 
radE  is perpendicular to ξ , so the second term in Eq. (7.98) vanishes: 

 2

0

1 ˆ
rad radE

c
=S ξ . (7.100) 

If the charge is instantaneously at rest (at time tr), then ˆc=u ξ , and 

 ( ) ( )0

2

0

1 ˆ ˆ ˆ ˆ
4 4

rad

qq

c



  
   =   =  −
   

E ξ ξ a ξ a ξ a . (7.101) 

In that case 

 ( )
2 2 2 22

2 20 0

2

0 0

1 1 sinˆ ˆ ˆ ˆ
4 16

rad rad

q q a
E a

c c c

  

    

   = = −  =     
S ξ ξ a ξ ξ , (7.102) 

where θ is the angle between ξ̂  and a . No power is radiated in the forward or backward direction—

rather, it is emitted in a donut about the direction of instantaneous acceleration (Fig. 7.3). 

The total power radiated is 

 
2 2 2 22

20 0

2

sin
2 sin

16 6
rad

q a q a
P da d

c c

 
   

  
=  == = S n . (7.103) 

Eq. (7.103) is known as the Larmor formula. 
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ξ

Fig. 7.3 

The assumption that 0=v , which was used to derive Eqs. (7.102) and (7.103), actually holds to good 

approximation as long as cv . This because, in the context of special relativity, the condition 0=v   

simply represents an astute choice of reference system, with no essential loss of generality. 

An exact treatment of the case 0v  is harder, due to Erad being more complicated and also due to Srad, 

the rate at which energy passes through the sphere, being not the same as the rate at which energy leaves 

the particle. Motion of the particle makes the energy rate dW/dt, at which energy passes through the 

sphere at radius ξ, not the same as the rate at which energy left the charge dW/dtr: 

 
/ 1

/r r r

dW dW dt dW

dt dt dt t dt
= = . (7.104) 

To find 
rt , we calculate derivative of ξ: 

 ( )
1 1 1

2
r

d
t

dt t t t



  

  
=  =  =  = − 
  

ξ
ξ ξ ξ ξ ξ v ξ . (7.105) 

On the other hand, by definition /rt t c= −  and hence ( )1 rc t
t


= −


. Therefore, we obtain 

 ( )
1

1r rt c t


−  = −v ξ , (7.106) 

so that 

 
r

c c
t

c

 


= =

−  ξ v ξ u
. (7.107) 

Coming back to Eq. (7.104), we have  

 
r

dW dW

dt c dt


=
ξ u

. (7.108) 

It is easy to see that  

 
ˆ

1
c c

 
= −

ξ u ξ v
. (7.109) 

This represents a geometrical factor (the same as in the Doppler effect), reflecting a relative motion 

between the detector (the sphere to detect electromagnetic radiation) and the source (moving point 

charge). This factor needs to be used to correctly calculate the radiating power:   

 
( )

( )

2

2
2 2

52

0 0

ˆ
1

16 ˆ
rad

dP q
E

d c c


   

 
= =

 

ξ u aξ u

ξ u

, (7.110) 
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where sind d d  =  is the solid angle into which this power is radiated. Integrating over θ and  to 

get the total power radiated is not trivial, and for now we simply quote the answer: 

 

22 6
20

26

q
P a

c c

 



 
 = −
 
 

v a
, (7.111) 

where 2 21/ 1 / c  − v . This is Liénard’s generalization of the Larmor formula (to which it reduces 

when cv ). The factor γ6 means that the radiated power increases enormously as the particle velocity 

approaches the speed of light. 

Example: Suppose v and a are instantaneously collinear (at time tr), in straight-line motion. We need to 

find the angular distribution of the radiation and the total power emitted.  

In this case ( ) ( )ˆc = u a ξ a , so 

 
( )

( )

2

2 2

52

0

ˆ ˆ

16 ˆ

dP q c

d c 

 
=

 − 

ξ ξ a

ξ v

. (7.112) 

Now 

 ( ) ( ) ( ) ( )
2 2

2ˆ ˆ ˆ ˆ ˆ ˆ ˆa  =  −    = − ξ ξ a ξ a ξ a ξ ξ a ξ a . (7.113) 

Assuming that that the particle moves along the z axis, i.e. ẑ v ,we obtain  

 
( )

2 2 2

0

52

sin

16 1 cos

q adP

d c

 

  
=

 −
, (7.114) 

where / c  v . This is consistent, of course, with Eq. (7.102), in the case 0=v . However, for very 

large v  (β ≈ 1) the donut of radiation (Fig. 6.3) is stretched out and pushed forward by the factor (1 − 

βcos θ)−5, as indicated in Fig. 7.4. Although there is still no radiation in precisely the forward direction, 

most of it is concentrated within an increasingly narrow cone about the forward direction. 

Fig. 7.4 

The total power emitted is found by integrating Eq. (7.114) over all angles: 

 
( ) ( )

12 2 2 22 2

0 0

5 52 2

1

sin
sin 2

16 161 cos 1

q a q adP x
P d d d dx

d c c x

 
   

   −

=  = =
 − −

   . (7.115) 

The integration yields  ( )
3

24
1

3


−

− , and therefore  



 16 

 
2 2 6

0

6

q a
P

c

 


= . (7.116) 

This result is consistent with the Liénard formula (Eq. (7.111)), for the case of collinear v and a. Notice 

that the angular distribution of the radiation is the same whether the particle is accelerating or 

decelerating; it only depends on the square of a, and is concentrated in the forward direction (with respect 

to the velocity) in either case. When a high-speed electron hits a metal target it rapidly decelerates, giving 

off what is called bremsstrahlung, or “braking radiation.”  

7.6 Appendix 

Here we prove the relationship 

 3 2 31 1
( ) ( , ) ( ) ( , ) ( , )

6 6

d
t d r t t t r d r

dt
  =  + + I e r J r m e Q e e r , (7.117) 

where e is arbitrary vector and  

 31
( ) ( , )

2
V

t t d r= m r J r , (7.118) 

 ( )2 3( ) ( , ) 3ij i j ij

V

Q t t x x r d r = − r , (7.119) 

and vector ( , )tQ e is defined as follows 

 ( , ) ( )i ij j

j

Q t Q t e=e . (7.120) 

Consider i component of the integral (7.117) 

 3( , )i j j i

j

I e x J t d r=  r . (7.121) 

For a localized current distribution  

 3 0i j i j

V S

x x d r x x da  =  =  J J n , (7.122) 

since there are now currents crossing surface S. On the other hand, 

 ( )3 3 3( )i j j i i j i j j i i j i jx x d r x x x x x x d r x J x J x x d r
t

 
  =  +  +  = + −    

  J r J J J .  (7.123) 

Eqs. (7.122) and (7.123) yield   

 3 3 31 1 1

2 2 2
j i i j i j

d
x J d r x J d r x x d r

dt
= − +   .  (7.124) 

Eq. (7.124) allows us to write Eq. (7.121) in the form: 

 ( )3 3 31 1

2 2
i j j i j i j j i j i j

j j j

d
I e x J d r e x J x J d r e x x d r

dt
= = − − +     . (7.125) 

The term in brackets can be rewritten using the antisymmetric unit tensor ijk : 

 ( ) ( )i j j i ijk k
k

x J x J − =  r J , (7.126) 

so that  



 17 

 ( ) ( ) ( )3 3 31 1 1

2 2 2
j i j j i ijk j k i

j jk

e x J x J d r e d r d r− − = −  = −        r J e r J , (7.127) 

The last term is related to quadrupole moment: 

 ( )2 3 3 2 33 3i ij j i j ij j j i j i

j j j

Q Q e x x r e d r e x x d r e r d r   = = − = −     . (7.128) 

Thus Eq. (7.125) can be written as follows: 

( ) ( )3 3 2 3 2 31

2 6 6 6 6

i i i i
i j j i ii

j

Q e Q ed d
I e x J d r d r r d r r d r

dt dt
 = = −     + + =  + +     e r J m e .  (7.129) 


