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Section 5: Guided Electromagnetic Waves 

5.1 Wave guides 

So far, we have dealt with plane waves of infinite extent; now we consider electromagnetic waves 

confined to the interior of a hollow pipe, or wave guide (Fig. 5.1). We assume the wave guide is a perfect 

conductor, so that E = 0 and B = 0 inside the material itself, and hence the boundary conditions at the 

inner wall are 

 || 0=E , (5.1) 

 0B⊥ = . (5.2) 

The latter condition follows from the fact that in a perfect conductor, E = 0, and hence (by Faraday’s law) 

∂B/∂t = 0; assuming the magnetic field started out zero, then, it will remain so. 

Fig. 5.1 

Free charges and currents are induced on the surface in such a way as to enforce these constraints. We are 

interested in monochromatic waves that propagate down the tube, so E and B have the generic form of 

 ( )

0( , , , ) ( , ) i kz tx y z t x y e −=E E , (5.3) 

 ( )

0( , , , ) ( , ) i kz tx y z t x y e −=B B . (5.4) 

The electric and magnetic fields must satisfy Maxwell’s equations, in the interior of the wave guide: 

 0 =E , (5.5) 

 0 =B , (5.6) 

 
t


 = −



B
E , (5.7) 

 
2

1

c t


 =



E
B . (5.8) 

The problem, then, is to find functions E0 and B0 such that the fields (5.3) and (5.4) obey the differential 

Equations (5.5)-(5.8), subject to boundary conditions (5.1), (5.2). 

As we will see below, confined waves are not (in general) transverse. Therefore, in order to satisfy the 

boundary conditions, we have to include longitudinal (z) components: 

 0
ˆ ˆ ˆ

x y zE E E= + +E x y z , (5.9) 

 
0

ˆ ˆ ˆ
x y zB B B= + +B x y z , (5.10) 
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where each of the components is a function of x and y. Putting this into Maxwell’s equations (5.7) and 

(5.8), we obtain 

 ( ) ( )i kz tz z
y y xx

E E
ikE e ikE i B

y y

 −  
 = −  − = 

  
E , (5.11) 

 ( ) ( )i kz tz z
x x yy

E E
ikE e ikE i B

x x

 −  
 = −  − = 

  
E , (5.12) 

 ( ) ( )y yi kz tx x
zz

E EE E
e i B

x y x y

 −
   

 = −  − = 
    

E , (5.13) 

 ( ) ( )

2

i kz tz z
y y xx

B B i
ikB e ikB E

y y c

 −  
 = −  − = − 

  
B , (5.14) 

 ( ) ( )

2

i kz tz z
x x yy

B B i
ikB e ikB E

x x c

 −  
 = −  − = − 

  
B , (5.15) 

 ( ) ( )

2

y yi kz tx x
zz

B BB B i
e E

x y x y c

 −
   

 = −  − = − 
    

B . (5.16) 

Equations (5.11), (5.12), (5.14), and (5.15) can be solved for Ex, Ey, Bx, and By, which can be expressed in 

terms of z components of the fields. Multiplying (5.12) by k and (5.14) by  and subtracting, we find: 

 

1
2 2

2 2

2 2

z z z z
x y y x x

E B E Bi
ik E k ik B i kB E E i k k

x y c c x y

 
   

−

      
− − + = +  = − +   

     
. (5.17) 

Multiplying (5.11) by k  and (5.15) by  and adding, we find: 

 

1
2 2

2 2

2 2

z z z z
x y x y y

B E E Bi
ik B k ik E i kB E E i k k

x y c c y x

 
   

−

      
− + − = −  = − −   

     
. (5.18) 

Multiplying (5.11) by /c2 and (5.15) by k and adding we find: 

 

 

1
2

2 2

2 2 2 2 2 2

z z z z
x y x y x

B E B Ei k i k
ik B k E i B E B i k k

x c y c c c c x c y

     


−

      
− + − = −  = − −   

     
. (5.19) 

Multiplying (5.12) by /c2 and (5.14) by k and subtracting we find: 

 

1
2

2 2

2 2 2 2 2 2

z z z z
x y y x y

E B E B
ik E k ik B i B i kE B i k k

c c x y c c c c x y

     


−

      
− − + = +  = − +   

     
. (5.20) 

It suffices, then, to determine the longitudinal components Ez and Bz; if we knew those, we could quickly 

calculate the others, just by differentiating. To find Ez and Bz, we use the remaining Maxwell’s equations: 

 ( ) 0 0
y yi kz tx x

z z

E EE E
ikE e ikE

x y x y

−
   

 = + + =  + + = 
    

E . (5.21) 

Substituting Eqs. (5.17) and (5.18), we obtain 
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1 1
2 2 2 22 2

2 2

2 2 2 2
0z z z z

z

E B E B
i k k i k k ikE

c x x y c y x y

 
 

− −

         
− + + − − + =      

           
 (5.22) 

or 

 
2 2 2

2

2 2 2
0z z

z

E E
k E

x y c

  
+ + − = 

   
. (5.23) 

Likewise, 

 ( ) 0 0
y yi kz tx x

z z

B BB B
ikB e ikB

x y x y

−
   

 = + + =  + + = 
    

B  (5.24) 

Substituting Eqs. (5.19) and  (5.20) we obtain 

 

1 1
2 2 2 22 2

2 2

2 2 2 2 2 2
0z z z z

z

B E E B
i k k i k k ikB

c x c x y c c x y y

   
− −

         
− − + − + + =      

           
 (5.25) 

or 

 
2 2 2

2

2 2 2
0z z

z

B B
k B

x y c

  
+ + − = 

   
. (5.26) 

If Ez = 0 these waves are called TE (“transverse electric”) waves. If Bz = 0 they are called TM 

(“transverse magnetic”) waves. If both Ez = 0 and Bz = 0, we call them TEM waves. It turns out that TEM 

waves cannot occur in a hollow wave guide. 

Proof: If Ez = 0, Gauss’s law (5.5) says 

 0
yx

EE

x y


+ =

 
, (5.27) 

and if Bz = 0, Faraday’s law (5.7) says 

 0
y x

E E

x y

 
− =

 
. (5.28) 

Indeed, the vector E0 in Eq. (5.9) has zero divergence and zero curl. It can therefore be written as the 

gradient of a scalar potential that satisfies Laplace’s equation. But the boundary condition on E requires 

that the surface be an equipotential, and since Laplace’s equation admits no local maxima or minima, this 

means that the potential is constant throughout, and hence the electric field is zero – no wave at all. 

Notice that this argument applies only to a completely empty pipe – if you ran a separate conductor down 

the middle, the potential at its surface need not be the same as on the outer wall, and hence a nontrivial 

potential is possible.   

Let us now summarize the results. The solution of the Maxwell equations for a hollow waveguide 

represents propagating waves in the z direction (~ ( )i kz te − ). The amplitudes of these waves can be found 

from differential equations (5.17)-(5.20), (5.23), (5.26) which we rewrite in the following form: 

 
2

z z
x

i E B
E k

x y




  
= + 

  
, (5.29) 

 
2

z z
y

i E B
E k

y x




  
= − 

  
, (5.30) 
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2 2

z z
x

i B E
B k

x c y





  
= − 

  
, (5.31) 

 
2 2

z z
y

i E B
B k

c x y





  
= + 

  
, (5.32) 

 
2 2

2

2 2
0z z

z

E E
E

x y


 
+ + =

 
, (5.33) 

 
2 2

2

2 2
0z z

z

B B
B

x y


 
+ + =

 
, (5.34) 

where  

 
2

2 2

2
k

c


  − . (5.35) 

There are two linear independent solutions of these equations corresponding to TM and TE waves.  

For TM waves, Bz = 0 everywhere. The solution of Eq. (5.33) should be found subject to boundary 

condition || 0=E which implies that on the surface  

 0z S
E = . (5.36) 

For TE waves, Ez = 0 everywhere. The solution of Eq. (5.34) should be obtained subject to boundary 

condition 0B⊥ =  =B n , where ( , )x yn n=n  is the normal to the surface S. It follows from equations 

(5.31) and (5.32) that this boundary condition implies 0z z
x x y y x y z

B B
B n B n n n B

x y

 
+ = + =  =

 
n . The 

latter equation can be written as follows: 

 0z

S

B

n


=


. (5.37) 

Equations (5.33) and (5.34),  together with boundary conditions (5.36) and (5.37)  specify an eigenvalue 

problem. The constant 2  must be nonnegative, otherwise the wave will decay exponentially with z. 

There will be a spectrum of eigenvalues 2

  and corresponding solutions for  = 1, 2, 3, ..., which form an 

orthogonal set. These different solutions are called the modes of the guide. For a given frequency , the 

wave number k is determined for each value of : 

 
2

2 2

2
k

c
 


= − . (5.38) 

If we define a cutoff frequency  

 c  = , (5.39) 

then the wave vector can be written as 

 2 21
k

c
  = − . (5.40) 

We note that, for   , the wave number k  is real; waves of the  mode can propagate in the guide. 

For frequencies less than the cutoff frequency, k  is imaginary; such modes cannot propagate and are 

called cutoff modes or evanescent modes. The behavior of the axial wave number as a function of 

frequency is shown qualitatively in Fig. 5.2. We see that at any given frequency only a finite number of 
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modes can propagate. It is often convenient to choose the dimensions of the guide so that at the operating 

frequency only the lowest mode can occur. This is shown by the vertical arrow on the figure. 

 

 

 

 

Fig. 5.2.  Wave number k
 versus frequency  for various 

modes . 
   is the cutoff frequency.  

 

5.2 Waves in a Rectangular Wave Guide 

Suppose we have a wave guide of rectangular shape with height a and width b (Fig. 5.3), and we are 

interested in the propagation of TE waves. The problem is to solve Eq. (5.34), subject to the boundary 

condition (5.37). We solve it by separation of variables. Let 

 ( , ) ( ) ( )zB x y X x Y y=  (5.41) 

so that 

 
2 2 2

2

2 2 2
0

X Y
Y X k XY

x y c

  
+ + − = 

   
. (5.42) 

Fig. 5.3 

Divide by XY and note that the x- and y-dependent terms must be constant: 

 
2

2

2

1
x

X
k

X x


= −


, (5.43) 

 
2

2

2

1
y

Y
k

Y y


= −


, (5.44) 

with 

 
2

2 2 2

2
0x yk k k

c


− − + − = . (5.45) 

The general solution is 

 
( ) sin( ) cos( ),

( ) sin( ) cos( ).

= +

= +

x x

y y

X x A k x B k x

Y y C k y D k y
 (5.46) 
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But the boundary conditions (5.37) require dX/dx = 0 at x = 0 and x = a. So, A = 0, and 

 / , 0, 1, 2...xk m a m= = . (5.47) 

The same goes for Y, with 

 / , 0, 1, 2...yk n b n= = , (5.48) 

and we conclude that  

 
0( , ) cos( / )cos( / )zB x y B m x a n y b = . (5.49) 

This solution is called the TEmn mode. The first index is conventionally associated with the larger 

dimension, so we assume a > b. At least one of the indices must be nonzero. The wave number k is  

 

2 22
2 2

2

m n
k

c a b




    
= − +    

     

. (5.50) 

The cutoff frequency is 

 

2 2

mn

m n
c

a b
 

   
= +   

   
. (5.51) 

If 
mn   the wave number is imaginary, and instead of a traveling wave, we have exponentially 

attenuated fields. The lowest cutoff frequency for a given wave guide occurs for the mode 

 
10

c

a


 = ; (5.52) 

frequencies less than this will not propagate at all. 

The wave number can be written more simply in terms of the cutoff frequency: 

 2 21
mnk

c
 = − . (5.53) 

The phase velocity is  

 
2 21 /mn

c

k



 
= =

−
v . (5.54) 

which is greater than c. However, as we know, the energy carried by the wave travels at the group 

velocity  

 2 21
1 /

/
g mnc

dk d
 


= = −v , (5.55) 

which is less than c.  

Fig. 5.4 
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There is another way to visualize the propagation of an electromagnetic wave in a rectangular pipe, and it 

serves to illuminate many of these results. Consider an ordinary plane wave, traveling at an angle   to the 

z axis, and reflecting perfectly off each conducting surface (Fig. 5.4). In the x and y directions the 

(multiply reflected) waves interfere to form standing wave patterns, of wavelength x = 2a/m and y = 

2b/n (hence wave number kx = 2/x = m/a and ky = 2/y = n/b), respectively. Meanwhile, in the z 

direction there remains a traveling wave, with wave number kz = k. The propagation vector for the 

“original” plane wave is therefore 

 ˆ ˆ ˆ
m n

k
a b

 
 = + +k x y z . (5.56) 

and the frequency is 

 

2 2

2 2 2 2

mn

m n
c c k c k

a b

 
 

   
= = + + = +   

   
k . (5.57) 

Only certain angles will lead to one of the allowed standing wave patterns: 

 2 2cos 1 /mn

k
  = = −

k
. (5.58) 

The plane wave travels at speed c, but because it is going at an angle   to the z axis, its group velocity 

down the wave guide is 

 2 2cos 1 /g mnc c  = = −v , (5.59) 

The phase velocity, on the other hand, is the speed of the wave fronts (A, say, in Fig. 5.4) down the pipe. 

Like the intersection of a line of breakers with the beach, they can move much faster than the waves 

themselves – in fact 

 
2 2cos 1 /mn

c c

  
= =

−
v . (5.60) 

5.3 Coaxial Transmission Line 

Fig. 5.5 

We showed above that a hollow wave guide cannot support TEM waves. But a coaxial transmission line, 

consisting of a long straight wire of radius a, surrounded by a cylindrical conducting sheath of radius b 

(Fig. 5.5), does admit modes with Ez = 0 and Bz = 0. In this case Maxwell’s equations (5.11) – (5.16)  

 z
y x

E
ikE i B

y



− =


, (5.61) 

 z
x y

E
ikE i B

x



− =


, (5.62) 

 
y x

z

E E
i B

x y


 
− =

 
, (5.63) 
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2

z
y x

B i
ikB E

y c


− = −


, (5.64) 

 
2

z
x y

B i
ikB E

x c


− = −


, (5.65) 

 
2

y x
z

B B i
E

x y c

 
− = −

 
, (5.66) 

take the form 

  
y xE B

k


− = , (5.67) 

 
x yE B

k


= , (5.68) 

 0
y x

E E

x y

 
− =

 
, (5.69) 

 
2

1
y xB E

k c


= , (5.70) 

 
2

1
x yB E

k c


= − , (5.71) 

 0
y x

B B

x y

 
− =

 
. (5.72) 

From Eqs. (5.67) and (5.71), (5.68) and (5.70), we see that  

 c
k


= , (5.73) 

i.e. the wave travel at speed c and is nondispersive. We also see that  

 
x yE cB= , (5.74) 

 
y xE cB= − , (5.75) 

so that 0 =E B , i.e. E and B are mutually perpendicular. Eqs. (5.69) and (5.72) together with 0 =E  

and  0 =B  are 

 0
y x

E E

x y

 
− =

 
, (5.76) 

 0
y x

B B

x y

 
− =

 
, (5.77) 

 0
yx

EE

x y


+ =

 
, (5.78) 

 0
yx

BB

x y


+ =

 
. (5.79) 

These are precisely the equations of electrostatics and magnetostatics, for empty space, in two dimensions; 
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the solution with cylindrical symmetry can be borrowed directly from the case of an infinite line charge and 

an infinite straight current, respectively: 

 0 ˆ( , )
A

s
s

 =E s , (5.80) 

 0 ˆ( , )
A

s
cs

 =B  , (5.81) 

where A0 is a constant. Substituting these into Eqs. (5.3) and (5.4), and taking the real part we find 

 0 ˆ( , , , ) cos( )
A

x y z t kz t
s

= −E s , (5.82) 

 0 ˆ( , , , ) cos( )
A

x y z t kz t
cs

= −B  . (5.83) 

5.4 Resonant Cavities  

A resonant cavity represents a waveguide with end faces placed on its length. Such a cavity can serve as 

an electromagnetic wave resonator to select or amplify waves at certain frequencies. In general, the 

electromagnetic waves in resonant cavities are standing waves due to reflections from end surfaces in all 

the three directions. 

As an example, we consider the resonant cavity produced by closing off the two ends of a rectangular 

wave guide (Fig. 5.3), at z = 0 and at z = d, making a perfectly conducting empty box.  

We look at the solutions of Maxwell’s equations in the form of ( , ) ( ) i tt e −=E r E r , ( , ) ( ) i tt e −=B r B r , 

subject the boundary conditions 0=E , 0B⊥ = . Substituting to Eqs. (5.5)-(5.8), we obtain 

 0 =E , (5.84) 

 0 =B , (5.85) 

 i =E B , (5.86) 

 
2

i

c


 = −B E . (5.87) 

To find the electric field E, we take curl of Eq. (5.86) : 

 ( ) ( ) ( )
2

2 2

2 2

i
i i

c c

 
 

 
  =  − = − = = − = 

 
E E E E B E E . (5.88) 

Therefore,  

 
2

2

2c


 = −E E . (5.89) 

These are three differential equations for the x-, y-, and z-components of the electric field E which we 

solve by separation of variables. Assuming that  

 ( , , ) ( ) ( ) ( )xE x y z X x Y y Z z= , (5.90) 

we obtain  

 
2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1 1d X d Y d Z d X d Y d Z
YZ ZX XY XYZ

dx dy dz c X dx Y dy Z dz c

 
+ + = −  + + = − . (5.91) 
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Each term must be a constant, so  

 
2 2 2

2 2 2

2 2 2
, ,x y z

d X d Y d Z
k X k Y k Z

dx dy dz
= − = − = − ,   (5.92) 

with  

 
2

2 2 2

2x y zk k k
c


+ + = . (5.93) 

The solution is  

    1 1 2 2 3 3( , , ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( )x x x y y z zE x y z A k x C k x A k y C k y A k z C k z = + + +  . (5.94) 

But 0=E  at the boundaries which means that 0xE =  at 0y =  and 0z = , so 
2 3 0C C= = , and 0xE =  

at y b=  and z d= , so /yk n b=  and /zk l d= , where n and l are integers.  Therefore, we obtain 

  1 1( , , ) sin( ) cos( ) sin( )sin( )x x x y zE x y z A k x C k x k y k z= + . (5.95) 

Using similar arguments for y-, and z-components of E, we obtain 

 2 2( , , ) sin( ) sin( ) cos( ) sin( )y x y y zE x y z k x A k y C k y k z = +  , (5.96) 

  3 3( , , ) sin( )sin( ) sin( ) cos( )z x y z zE x y z k x k y A k z C k z= + , (5.97) 

where /xk m a= . Actually, there is no reason at this point to assume that kx, ky and kz are the same in all 

three components, but in a moment, we will see that in fact they do have to be the same. 

From  0 =E , we find 

 
 

 

1 1 2 2

3 3

cos( ) sin( ) sin( )sin( ) sin( ) cos( ) sin( ) sin( )

sin( )sin( ) cos( ) sin( ) 0.

x x x y z y x y y z

z x y z z

k A k x C k x k y k z k k x A k y C k y k z

k k x k y A k z C k z

 − + − + 

+ − =
 (5.98) 

First, this equation tells us that kx, ky and kz must be the same for different field components, because 

otherwise this equation could not be satisfied for all x, y, and z, due to linear independence of Fourier 

harmonics.   

Further, putting 0x =  in Eq. (5.98), we obtain  

 
1 sin( )sin( ) 0x y zk A k y k z = , (5.99) 

and hence 
1 0A = . Likewise, putting 0y = in Eq. (5.98), we find 

2 0A = , and putting 0z = , we find 

3 0A = . As the result, we obtain  

 
1 2 3 0x y zC k C k C k+ + = , (5.100) 

and the electric field is 

 
1 2 3

ˆ ˆ ˆcos( )sin( )sin( ) sin( )cos( )sin( ) sin( )sin( )cos( )x y z x y z x y zC k x k y k z C k x k y k z C k x k y k z= + +E x y z , (5.101) 

where /xk m a= , /yk n b= , and /zk l d=  (m, n, l are integers) and coefficients 
1C , 

2C , and 
3C  are 

related by Eq. (5.100). 

 



 11 

The corresponding magnetic field B is given by ( )/i =− B E : 

 
3 2sin( )cos( )cos( ) sin( )cos( )cos( )

yz
x y x y z z x y z

EEi i
B C k k x k y k z C k k x k y k z

y z 

 
 = − − = − −     

, (5.102) 

 
1 3cos( )sin( )cos( ) cos( )sin( )cos( )x z

y z x y z x x y z

E Ei i
B C k k x k y k z C k k x k y k z

z x 

  
 = − − = − −     

, (5.103) 

 
2 1cos( )cos( )sin( ) cos( )cos( )sin( )

y x
z x x y z y x y z

E Ei i
B C k k x k y k z C k k x k y k z

x y 

 
 = − − = − −     

. (5.104) 

This can be written more compact as follows:  

 
( )

( ) ( )

3 2

1 3 2 1

ˆsin( )cos( )cos( )

ˆ ˆcos( )sin( )cos( ) cos( )cos( )sin( ) .

y z x y z

z x x y z x y x y z

i
C k C k k x k y k z

C k C k k x k y k z C k C k k x k y k z


= − − +


+ − + −


B x

y z

 (5.105) 

This form of B automatically satisfies the boundary condition 0B⊥ = : 0xB =  at 0x =  and x a= , 

0yB =  at 0y =  and y b= , and 0zB =  at 0z =  and z d= . 

Also, it is easy to see that 0 =B : 

 

( )

( ) ( )

( )

3 2

1 3 2 1

3 2 1 3 2 1

cos( )cos( )cos( )

cos( )cos( )cos( ) cos( )cos( )cos( )

cos( )cos( )cos( ) 0.

y z x x y z

z x y x y z x y z x y z

y x z x z y x y x z y z x y z

i
C k C k k k x k y k z

C k C k k k x k y k z C k C k k k x k y k z

i
C k k C k k C k k C k k C k k C k k k x k y k z





  = − − +


+ − + − =


= − − + − + − =

B

 (5.106) 

Thus, Eqs. (5.101) and (5.105) satisfy all Maxwell’s equations and boundary conditions. For TE modes, 

we pick 0zE = , so that 
3 0C =  and hence 1 2 0x yC k C k+ = , leaving only the overall amplitude 

undetermined, for given m, n, and l. For TM modes 0zB = , so 
2 1 0x yC k C k− = , again leaving only the 

overall amplitude undetermined, since 
1 2 3 0x y zC k C k C k+ + = .  

In either case of TEmnl or TMmnl, the frequency is given by   

 ( )
2 2 2

2 2 2 2 2 2 2 2 2

x y z

m n l
c k c k k k c

a b d
 

      
= = + + = + +      

       

, (5.107) 

or 

 

2 2 2

mnl

m n l
c

a b d
 

     
= + +     

     
. (5.108) 

 

 


