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Section 2: Conservation Laws   
2.1 Conservation of energy  
In this section we consider conservation of energy, often called Poynting’s theorem.  

In the EM-1 course, we found that the work necessary to assemble a static charge distribution (against the 
Coulomb repulsion of like charges) is given by  

 2 30

2eW E d rε
= ∫ , (2.1) 

where E is the resulting electric field, and the integration is performed over all space.  

Likewise, the work required to get currents going (against the back emf) is given by  

 2 3

0

1
2mW B d r
µ

= ∫ , (2.2) 

where B is the resulting magnetic field. This suggests that the total energy stored in electromagnetic 
fields, per unit volume, is 

 2 2
0

0

1 1
2emu E Bε

µ
 

= + 
 

. (2.3) 

Suppose that we have some charge and current distribution which at time t produces fields E and B. In the 
next instant dt the charges move around a bit. The question is how much work dw is done by the 
electromagnetic forces acting on these charges in the interval dt? According to the Coulomb-Lorentz 
force law, the work done on a charge q is  

 ( )dw d q dt q dt= ⋅ = + × ⋅ = ⋅F l E v B v E v , (2.4) 

which reflects the fact that the magnetic field does do work, since the magnetic force is perpendicular to 
the velocity. In Eq. (2.4), the charge is 3q d rρ=  which results in  

 ( )3 3dw d rdt d rdtρ= ⋅ = ⋅E v E J , (2.5) 

where ρ=J v  is the current density. Therefore, the total rate of doing work by the fields in a finite 
volume V is 

 ( )3 3

V V

dW dw d r d r
dt dt

= = ⋅∫ ∫ E J . (2.6) 

This power is delivered representing a conversion of electromagnetic energy into mechanical or thermal 
energy. It must be balanced by a corresponding rate of decrease of energy in the electromagnetic field 
within the volume V. Evidently ⋅E J is the work done per unit time, per unit volume—which is the power 
delivered per unit volume. We can express this quantity in terms of the fields alone, using Ampere-

Maxwell’s law, 0 0 0 t
µ µ ε ∂

∇× = +
∂
EB J , to eliminate J: 

 ( ) 0
0

1
t

ε
µ

∂
⋅ = ⋅ ∇× − ⋅

∂
EE J E B E . (2.7) 

Using the vector identity (which comes from the cyclic permutation in the triple product), 

 ( ) ( ) ( )∇ ⋅ × = ⋅ ∇× − ⋅ ∇×E B B E E B , (2.8) 
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and Faraday’s law, 
t

∂
∇× = −

∂
BE ,  we have   

 ( ) ( )
t

∂
⋅ ∇× = − ⋅ −∇ ⋅ ×

∂
BE B B E B . (2.9) 

Using 21 ( )
2

B
t t

∂ ∂
⋅ =
∂ ∂
BB  and 21 ( )

2
E

t t
∂ ∂
⋅ =
∂ ∂
EE , we obtain 

 ( )2 2
0

0 0

1 1 1
2

E B
t
ε

µ µ
 ∂

⋅ = − + − ∇ ⋅ × ∂  
E J E B . (2.10) 

Substituting this into Eq. (2.6), and applying the divergence theorem to the second term, we have 

 ( )2 2 3
0

0 0

1 1 1
2V S

dW d E B d r da
dt dt

ε
µ µ

 
= − + − × ⋅ 

 
∫ ∫ E B n



, (2.11) 

where S is the surface bounding V. This is Poynting’s theorem, representing conservation of energy in 
electrodynamics. The first integral is the total energy stored in the electromagnetic fields. The second 
term represents the rate at which energy is transported out of V, across its boundary surface, by the 
electromagnetic fields. Poynting’s theorem says, then, that the work done on the charges by the 
electromagnetic force is equal to the decrease in energy remaining in the fields, less the energy that 
flowed out through the surface. 

The energy per unit time, per unit area, transported by the fields is called the Poynting vector:  

 ( )
0

1
µ

≡ ×S E B . (2.12) 

Specifically, da⋅S n is the energy per unit time crossing the infinitesimal surface da – the energy flux – so 
S is the energy flux density. Using the Poynting vector (2.12) and Eq. (2.3) for the electromagnetic energy 
density, we can express Poynting’s theorem more compactly 

 3
em

V S

dW d u d r da
dt dt

= − − ⋅∫ ∫ S n


. (2.13) 

The work done per unit time per unit volume by the fields ( )⋅E J  is a conversion of electromagnetic 
energy into mechanical or heat energy. Since matter is ultimately composed of charged particles 
(electrons and atomic nuclei), we can think of this rate of conversion as a rate of increase of mechanical 
energy (kinetic, potential, etc.) of the charged particles per unit volume. We denote this energy by umech. 
Then, we can interpret Poynting’s theorem for the fields (E, B) as a statement of conservation of energy 
of the combined system of particles and fields  

 ( ) 3 3
mech

V V

dW dd r u d r
dt dt

= ⋅ =∫ ∫E J . (2.14) 

Then the energy conservation law takes the form 

 ( ) 3
em mech

V S V

u u d r da da
t
∂

+ = − ⋅ = − ∇ ⋅
∂∫ ∫ ∫S n S



. (2.15) 

Since volume V is arbitrary, this can be cast into the form of a differential continuity equation  
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 ( )em mechu u
t

∂ +
= −∇ ⋅

∂
S . (2.16) 

It is differential form of the Poynting’s theorem. Compare it with the continuity equation expressing 
conservation of charge:  

 
t
ρ∂
= −∇ ⋅

∂
J . (2.17) 

The current density J is replaced by Pointing’s vector S. The latter represents the flow of energy in the 
same way that J describes the flow of charge.   

If no work is done on the charges in volume V (what, for example, happens in regions of empty space 
where there are no charges), then / 0mechu t∂ ∂ = , and in this case the energy continuity equation is 

 emu
t

∂
= −∇ ⋅

∂
S . (2.18) 

Example: Energy flow in a resistive wire 
A long, straight, current-carrying wire with radius a and conductivity σ provides a nice illustration of 
Poynting’s theorem (Fig. 2.1). Let the current I flow in the positive z-direction and let the wire volume be 

the integration volume V in Eq. (2.11). By Ohm’s law, J = σE, and hence the electric field is 2 ˆI
aπ σ

=E z . 

According to Ampere’s law, 0µ∇× =B J , resulting in the magnetic field at the wire surface 0 ˆ
2

I
a

µ
π

=B φ . 

According to Eq. (2.12), Poynting’s vector points radially toward the center of the wire and is equal to 
2

2 3
ˆ

2
I
aπ σ

= −S s . Moreover, because 2

LR
aπ σ

=  is the resistance of the wire, the surface integral of 

Poynting’s vector is given by 

 
2

2
2

S

I Lda I R
aπ σ

− ⋅ = =∫ S n


. (2.19) 

This confirms the conservation of energy statement (2.15). This is because for steady currents, 
/ 0emu t∂ ∂ =  due to the fields being constant in time. On the other hand, for an ohmic circuit, 

3 2mech
V

u d r I R
t

∂
=

∂∫ . This follows from Eq. (2.14), as can be seen from     

 ( ) ( ) ( ) ( )3 3 3 3 2
mech A B

V V V V S

d u d r d r d r d r da I I R
dt

= ⋅ = − ∇ ⋅ Φ + Φ ∇ ⋅ = Φ ⋅ = Φ −Φ =∫ ∫ ∫ ∫ ∫E J J J J n


, (2.20) 

where we took into account that for steady current 0∇ ⋅ =J . It also shows that a constant flow of 
electromagnetic energy into the wire through its side walls is required to maintain the kinetic energy of 
the current carrying particles against the energy they lose to ohmic heating. The energy delivered to the 
wire in Figure 2.1 originates from a battery or some other source of emf.  

Fig. 2.1 
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Conservation of energy in matter 
Above, we derived the energy conservation law from Maxwell’s equations in vacuum. The same 
approach can be applied to Maxwell’s equations in matter. The required algebraic steps are literally the 
same as for the vacuum case. In this case, the total electromagnetic energy density is given by 

 ( )1
2emu = ⋅ + ⋅E D B H  (2.21) 

and the Poynting vector is defined by 
 = ×S E H . (2.22) 

With these definitions, the Poynting theorem has the integral form (2.13) and the differential form (2.16).  

For linear media, where ε=D E  and µ=B H , these equations are simplified, so that  

2 21 1
2emu E Bε

µ
 

= + 
 

 and 1
µ

= ×S E B .  

2.2 Maxwell’s stress tensor 
Let’s calculate the total electromagnetic force on the charges in volume V: 

 ( ) ( )3 3

V V

d r d rρ ρ= + × = + ×∫ ∫F E v B E J B . (2.23) 

The force per unit volume is evidently 
 ρ= + ×f E J B . (2.24) 

Now we eliminate ρ and J to write it in terms of the fields alone. Using Maxwell’s equations, we find: 

 ( )0 0
0

1
t

ε ε
µ

 ∂
= ∇ ⋅ + ∇× − × ∂ 

Ef E E B B . (2.25) 

Now 

 ( )
t t t
∂ ∂ ∂

× = × + ×
∂ ∂ ∂

E BE B B E . (2.26) 

and Faraday’s law says  

 
t

∂
= −∇×

∂
B E , (2.27) 

so 

 ( ) ( )
t t

∂ ∂
× = × + × ∇×

∂ ∂
E B E B E E . (2.28) 

Thus 

 ( ) ( ) ( ) ( )0 0 0
0

1
t

ε ε ε
µ

∂
= ∇ ⋅ − × ∇× − × − × ∇×

∂
f E E B B E B E E . (2.29) 

Using the product rule  
 ( ) ( ) ( ) ( ) ( )∇ ⋅ = × ∇× + × ∇× + ⋅∇ + ⋅∇a b a b b a a b b a , (2.30) 
rule we can write  
 ( ) ( ) ( )2 2 2E∇ = ⋅∇ + × ∇×E E E E , (2.31) 

so that 

 ( ) ( ) ( )21
2

E× ∇× = ∇ − ⋅∇E E E E . (2.32) 
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Similar, we have for B: 

 ( ) ( ) ( )21
2

B× ∇× = ∇ − ⋅∇B B B B . (2.33) 

We can therefore rewrite Eq. (2.29) as follows 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
0 0 0

0

2 2
0 0 0

0 0

1 1 1
2 2

1 1 1 ,
2

B E
t

E B
t

ε ε ε
µ

ε ε ε
µ µ

∂   = ∇ ⋅ − ∇ − ⋅∇ − × − ∇ − ⋅∇ =   ∂   

  ∂
 ∇ ⋅ + ⋅∇  +  ⋅∇ + ∇ ⋅  − ∇ + ∇ − ×     ∂ 

f E E B B E B E E

E E E E B B B B E B
 (2.34) 

where we used 0.∇⋅ =B  This equation can be simplified by introducing Maxwell’s stress tensor: 

 2 2
0

0

1 1 1
2 2ij i j ij i j ijT E E E B B Bε δ δ

µ
   ≡ − + −   
   

. (2.35) 

The indices i and j refer to the coordinates x, y, and z, so the stress tensor has a total of nine components. 
The Kronecker delta, ijδ , is 1 if indices are the same and is zero otherwise. For example, 

 ( ) ( )2 2 2 2 2 2
0

0

1 1
2 2xx x y z x y zT E E E B B Bε

µ
= − − + − − , (2.36) 

 0
0

1
xy x y x yT E E B Bε

µ
= + , (2.37) 

and so on. Because of two indices sometimes tensors are denoted by a double arrow T


. One can form a 
dot product of T



 and a vector a in two ways—on the left, and on the right: 

 ( ) i ijj
i

a T⋅ =∑a T


,     ( ) ji ij
i

T a⋅ =∑T a


. (2.38) 

We note, however, that due to Tkl being symmetric, the two dot products in Eq. (2.38) are identical. The 
resulting object with one index is a vector. In particular, the divergence of T



has j component 

 

( )

( ) ( ) ( ) ( )

2 2
0

0

2 2
0

0

2 2
0

0

1 1 1
2 2

1 1 1
2 2

1 1 1 .
2 2

i i j ij i i j ijj
i i

j i i i i j j j i i i i j j
i i i i

j j j j j j

E E E B B B

E E E E E B B B B B

E E E B B B

ε δ δ
µ

ε
µ

ε
µ

   ∇ ⋅ = ∇ − + ∇ − =   
   

   
∇ + ∇ − ∇ + ∇ + ∇ − ∇ =   

   
   ∇ ⋅ + ⋅∇ − ∇ + ∇ ⋅ + ⋅∇ − ∇      

∑ ∑

∑ ∑ ∑ ∑

T

E E B B



 (2.39) 

Using the Maxwell stress tensor, the force per unit volume given by Eq. (2.34) can be written as: 

 0 0 t
ε µ ∂

= ∇ ⋅ −
∂
Sf T



, (2.40) 

where S is the Poynting vector. The total force on charges (Eq. (2.23)) in volume V is 

 3 3
0 0 0 0

V S V

dd r da d r
t dt

ε µ ε µ∂ = ∇ ⋅ − = ⋅ − ∂ ∫ ∫ ∫
SF T T n S

 



, (2.41) 

where the divergence theorem was used to convert the first term to a surface integral. In the static case 
(or, more generally, whenever 3d r∫S  is independent of time), the second term drops out, and the 

electromagnetic force can be expressed entirely in terms of the stress tensor at the boundary:  
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S

da= ⋅∫F T n




. (2.42) 

Physically, T


 is the force per unit area (or stress) acting on the surface. More precisely, Tij is the force 
per unit area in the i-th direction acting on an element of surface oriented in the j-th direction. The 
diagonal elements of the stress tensor, i.e.  Txx, Tyy, and Tzz, represent compression stress or pressures, and 
the off-diagonal elements, i.e. Txy, Txz, etc., are shear stress.  

Example: Two point charges 
Let us consider a simple example of the calculation of force between two equal point charges q separated 
by distance 2a.  The force can be calculated by constructing a plane equidistant from the two charges and 
integrating Maxwell’s stress tensor over this plane. If we assume that the charges lie at the z axis at +a 
and –a, the plane is the xy plane, and we intend to calculate the force on the upper charge, then the normal 
to the plane is ˆ= −n z . Since by symmetry the force has only non-vanishing z component, we need only 
the zz component of the tensor: 

 2 2
0

1
2zz zT E Eε  = − 

 
. (2.43) 

The electric field at a point on the surface placed at distance s from the z axis is  

     2 2
0

1 ˆ2 cos
4

q
s a

θ
πε

=
+

E s . (2.44) 

where angle θ is such that 2 2cos /s s aθ = + . It follows that  0zE =  and  

     
2 2

2
2 2 3

02 ( )
q sE

s aπε
 

=   + 
. (2.45) 

Therefore, we have  

 
2 2 2

0 2 2 3 2 3
0 00 0

1 12
2 2 ( ) 4 2 ( )z

S

q s q uduF da sds
s a u a

ε π
πε πε

∞ ∞ 
= ⋅ = =  + + 
∫ ∫ ∫T n




, (2.46) 

where we let 2u s≡ . The integral can easily be taken by parts  

 2 3 2 2 2 2 2 2
0 0 0 0

1 1 1 1 1 1
( ) 2 ( ) 2 ( ) 2 ( ) 2

udu duud
u a u a u a u a a

∞∞ ∞ ∞ 
= − = = − = + + + + 

∫ ∫ ∫ . (2.47) 

Finally, we have  

 
2

2
0

1
4 (2 )z
qF

aπε
= . (2.48) 

Example: Charged sphere  
Here, we determine the net force on the “northern” hemisphere of a uniformly charged solid sphere of 
radius R and charge Q.  

 Fig. 2.2 
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The boundary surface consists of two parts—a hemispherical “bowl” at radius R, and a circular disk at θ = 

π/2 (Fig. 2.2). For the bowl, 2ˆ sinda R d dθ θ φ=n r  and 2
0

ˆ
4

Q
Rπε

=E r . In Cartesian components, 

ˆ ˆ ˆ ˆsin cos sin sin cosθ φ θ φ θ= + +r x y z  and therefore 

 
2

0 0 2
0

sin cos cos
4zx z x

QT E E
R

ε ε θ θ φ
πε

 
= =  

 
, (2.49) 

 
2

0 0 2
0

sin cos sin
4zy z y

QT E E
R

ε ε θ θ φ
πε

 
= =  

 
, (2.50) 

 ( ) ( )
2

2 2 2 2 2
0 0 2

0

1 cos sin
2 4zz z x y

QT E E E
R

ε ε θ θ
πε

 
= − − = − 

 
. (2.51) 

The net force is obviously in the z-direction, so it suffices to calculate 

 ( ) ( )
2

2 3
0 2

0

cos
4zx x zy y zz zz

Qda T n T n T n da R da
R

ε θ
πε

 
⋅ = + + =  

 
T n


. (2.52) 

The force on the “bowl” is therefore 

 
2 /2 2

30
2

0 00

2 cos sin
2 4 32bowl

Q QF d
R R

πε
π θ θ θ

πε πε
 

= = 
 

∫ . (2.53) 

Meanwhile, for the equatorial disk, ˆda rdrdφ= −n z , and since we are inside the sphere  

 ( )3 3
0 0

ˆ ˆcos sin
4 4

Q Q r
R R

φ φ
πε πε

= = +E r x y . (2.54) 

Thus  

 ( )
2

2 2 2 20
0 3

0

1
2 2 4zz z x y

QT E E E r
R

ε
ε

πε
 

= − − = −  
 

, (2.55) 

and hence 

 ( )
2

30
3

02 4z

Qda r drd
R

ε
φ

πε
 

⋅ =  
 

T n


. (2.56) 

The force on the disk is therefore 

 
2 2

30
3 2

0 00

2
2 4 64

R

disk
Q QF r dr

R R
ε

π
πε πε

 
= = 

 
∫ . (2.57) 

Combining Eqs. (2.53) and (2.57), we find that the net force on the northern hemisphere is 

 
2

2
0

3
64

QF
Rπε

= . (2.58) 

Incidentally, in applying Eq. (2.42), any volume that encloses all of the charge in question (and no other 
charge) will do the job. For example, in the present case we could use the whole region z > 0. In that case 
the boundary surface consists of the entire xy plane (plus a hemisphere at r = ∞, but E = 0 out there, so it 
contributes nothing). In place of the “bowl,” we now have the outer portion of the plane (r > R). Here 
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2

0
4

0

1
2 4zz

QT
r

ε
πε

 
= −  

 
 (2.59) 

(Eq. (2.51) with θ = π/2 and R → r ), and ˆda rdr dφ= −n z , so 

 ( )
2

0
3

0

1
2 4z

Qda drd
r

ε
φ

πε
 

⋅ =  
 

T n


, (2.60) 

and the contribution from the plane for r > R is 

 
2 2

0
3 2

0 0

12
2 4 32R

Q Qdr
r R

ε
π

πε πε

∞ 
= 

 
∫ , (2.61) 

the same as for the bowl (Eq. (2.53)). 

2.3 Newton’s third law in electrodynamics 
Here we discuss Newton’s third law in electrodynamics. Imagine a point charge q traveling along the x 
axis at a constant speed v. Because it is moving, its electric field is not given by Coulomb’s law; 
nevertheless, E still points radially outward from the instantaneous position of the charge (Fig. 2.3a). 
Since, moreover, a moving point charge does not constitute a steady current, its magnetic field is not 
given by the Biot-Savart law. Nevertheless, B still circles around the axis in a manner suggested by the 
right-hand rule (Fig. 2.3b). 

Fig. 2.3 

Now suppose this moving charge encounters an identical charge, proceeding at the same speed along the 
y axis (Fig. 2.4). The electric force between them is repulsive, but how about the magnetic force?  

The magnetic field of q1 points into the page (at the position of q2), so the magnetic force on q2 is toward 
the right, whereas the magnetic field of q2 is out of the page (at the position of q1), and the magnetic force 
on q1 is upward. This implies that the electromagnetic force of q1 on q2 is equal but not opposite to the 
force of q2 on q1 in violation of Newton's third law.  

Fig. 2.4 
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Since forces are associated with a change of momentum in time, this fact implies that the momentum of 
the particles is not conserved. Momentum conservation is rescued in electrodynamics by the fact that the 
fields themselves carry momentum. In the case of the two point charges in Fig. 2.4, whatever momentum 
is lost to the particles is gained by the fields. Only when the field momentum is added to the mechanical 
momentum of the charges the momentum conservation is restored.  

2.4 Conservation of momentum 
According to Newton’s second law, the force on an object is equal to the rate of change of its momentum: 

 mechd
dt

=
PF . (2.62) 

Equation (2.41) can therefore be written in the form 

 3
0 0

mech

V S

d d d r da
dt dt

ε µ= − + ⋅∫ ∫
P S T n





, (2.63) 

where Pmech is the total (mechanical) momentum of the particles contained in volume V. This expression is 
similar in structure to Poynting’s theorem, and it invites an analogous interpretation. The first integral 
represents momentum stored in the electromagnetic fields themselves: 

 3
0 0em

V

d rε µ= ∫P S , (2.64) 

while the second integral is the momentum per unit time flowing in through the surface. Equation (2.63) 
the general statement of conservation of momentum in electrodynamics: Any increase in the total 
momentum (mechanical plus electromagnetic) is equal to the momentum brought in by the fields: 

 ( )mech em
S

d da
dt

+ = ⋅∫P P T n




. (2.65) 

If V is all of space, then no momentum flows in or out, and Pmech+ Pem is constant.  

Conservation of momentum can be written in a differential form. Let pmech be the density of mechanical 
momentum, and pem the density of momentum in the fields 

 0 0em ε µ=p S . (2.66) 
Then Eq. (2.63) in the differential form says 

 ( )mech emt
∂

+ = ∇ ⋅
∂

p p T


. (2.67) 

Evidently, −T


 is the momentum flux density, playing the role of J (current density) in the continuity 
equation, or S (energy flux density) in Poynting’s theorem. Specifically, Tij is the momentum in the i 
direction crossing a surface oriented in the j direction, per unit area, per unit time. Notice that Poynting’s 
vector has appeared in two quite different roles: S itself is the energy per unit area, per unit time, 
transported by the electromagnetic fields, while 0 0ε µ S  is the momentum per unit volume stored in those 

fields. Similarly, T


 plays a dual role: T


 itself is the electromagnetic stress (force per unit area) acting on 
a surface, and −T



 describes the flow of momentum (momentum current density) transported by the 
fields. Note a negative sign coming from the definition from Maxwell’s stress tensor. 

Example: Absorption of a transverse plane wave 
A transverse plane wave is incident normally to vacuum on perfectly absorbing flat screen. From the law 
of momentum conservation, we need to show that the pressure (called radiation pressure) exerted on the 
screen is equal to the field energy per unit volume in the wave.  
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Conservation of momentum says that  

  ( )mech em
S

d da
dt

+ = ⋅∫P P T n




, (2.68) 

The i component of the force transmitted across S and acting on the particles and field inside V.  

 ( )mech em ij ji
jS

d T n da
dt

+ = ∑∫P P


. (2.69) 

We take surface S to cover outside screen and going to right to contain thickness of the screen. Take the 
direction of propagation in +z direction, with n as outward normal. Then,  ij j

j
T n∑  is pressure (a force per 

unit area) across S into volume V. Since ˆ= −n z , radiation pressure ij j iz
j

T n T= −∑  

 The Maxwell’s stress tensor is given by Eq. (2.36)  

 2 2
0

0

1 1 1
2 2ij i j ij i j ijT E E E B B Bε δ δ

µ
   = − + −   
   

. (2.70) 

Since 0z zE B= =  for the plane wave propagating along the z direction: 

 2 2 2 2
0 0

0 0

1 1 1 1 1
2 2 2iz i z iz i z iz izT E E E B B B E Bε δ δ δ ε

µ µ
    = − + − = − +    

     
. (2.71) 

Since only zz component is non-zero the radiation pressure is 

 2 2
0

0

1 1
2zz emT E B uε

µ
 

− = + = 
 

, (2.72) 

where uem is the field energy density of the wave. 

Example: Coaxial cable 
A long coaxial cable, of length l, consists of an inner conductor (radius a) and an outer conductor (radius 
b). It is connected to a battery at one end and a resistor at the other so that the voltage drop between the 
inner and outer conductor is V (Fig. 2.5). The inner conductor carries a uniform charge per unit length λ 
(induced by an allied voltage V), and a steady current I to the right; the outer conductor has the opposite 
charge and current. What is the electromagnetic momentum stored in the fields? 

 Fig. 2.5 
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The fields are given by  

 0

0

ˆˆ,
2 2

I
s s

µλ
πε π

= =E s B φ . (2.73) 

The Poynting vector is therefore 

 2 2
0 0

1 ˆ
4

I
s

λ
µ π ε

= × =S E B z . (2.74) 

So, energy is flowing down the line, from the battery to the resistor. The power transported is 

 2 2
0 0

2 ln
4 2

b

S a

I I bda sds
s a

S n λ λπ
π ε πε

Π = ⋅ = =∫ ∫ . (2.75) 

On the other hand, the electric potential between the inner and outer conductors is 

 
0 0

( ) ( ) ln
2 2

a b

b a

bV a b d ds
s a

λ λ
πε πε

= Φ −Φ = − ⋅ = =∫ ∫E s . (2.76) 

Therefore, we have IVΠ = as expected.  

The momentum stored in the fields is 

 3 0
0 0 0 0 2 2 2

0

ˆ ˆ ˆ2 ln
4 2

b

em
V a

II b IVd r lsds l l
s a c

µ λλε µ ε µ π
π ε π

= = = =∫ ∫P S z z z . (2.77) 

While the cable is not moving, and E and B are static, there is momentum stored in the fields. Clearly, 
this momentum is associated with the transport of energy from the battery to the resistor.  

Now, let us assume that the resistance is turned up, so the current slowly decreases. According to 
Faraday’s law, / t∇× = −∂ ∂E B , the changing magnetic field induces an electric field. Integrating over 
the surface S bounded by a rectangular amperian loop C normal to φ̂  with sides placed at s and s0, such 
that  b s a> >  and 0s a< , we find  

 0 01( ) ln
2 2

s

S C S a

l ld dI dI sda d E s l da ds
dt dt s dt a

µ µ
π π

′∇× = ⋅ = = − ⋅ = =
′∫ ∫ ∫ ∫E E l B n



. (2.78) 

This field 0 ˆ( ) ln
2

dI ss
dt a

E zµ
π

=  exerts no force on charge +λ at s = a and the force on charge −λ at s = b is  

 0 ˆ( ) ln
2

l dI bl b
dt a

F E zµ λ
λ

π
= − = − . (2.79) 

The total momentum imparted to the cable, as the current drops from I to 0, is therefore 

 0 ˆln
2mech

I bdt l
a

µ λ
π

= =∫P F z , (2.80) 

which is precisely the momentum originally stored in the fields. 

2.5 Angular momentum 
In addition to energy  

 2 2
0

0

1 1
2emu E Bε

µ
 

= + 
 

, (2.81) 

and momentum, 
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 0 0em ε µ=p S , (2.82) 

the electromagnetic fields are carrying the angular momentum. The angular momentum density is   

 [ ]0 0em em ε µ= × = ×l r p r S . (2.83) 

Similar to the momentum, there is a balance in the angular momentum involving mechanical and 
electromagnetic components.  To establish the associated relationship, we proceed in a similar way to 
Sec. 2.2. The rate of change of angular momentum is the torque τ, which value per unit volume is 
determined by the rate of change of mechanical momentum density lmech  and can be written as  

 ( )mechd
dt

ρ= = × = × + ×
l r f r E J Bτ , (2.84) 

where f is the force per unit volume (see Eq. (2.24)). We can perform the some algebraic manipulation on 
the right hand side of Eq. (2.84) by using Maxwell’s equations, as we did in Sec. 2.2 to obtain  

 em

t
∂

= ∇ ⋅ −
∂
pf T



. (2.85) 

With the momentum defined by Eq. (2.82), Eq. (2.85) is identical to Eq. (2.40). We therefore obtain  

 mech em emd
dt t t

∂ ∂
= ×∇ ⋅ − × = ×∇ ⋅ −

∂ ∂
l p lr T r r T

 

, (2.86) 

where lem is the electromagnetic angular momentum density (2.83). Eq. (2.86) can be written as   

 ( )mech em
d
dt

+ = ×∇ ⋅l l r T


. (2.87) 

This equation is reminiscent to the continuity equation for the momentum density (2.67), where T


 plays  
a role of the momentum flux density. To have full consistency, however, we need to have the divergence 
of the angular momentum flux density = ×r T




  on the right-hand side of Eq. (2.87). Here 


  is the 
second rank tensor which is defined as follows  

 ( )il il ijk j kl
jk

x Tε= × =∑r T


 , (2.88) 

where ijkε  is the Levi-Civita symbol which is defined as follows:  

 
1, if 123, 231, or 312
1, if 132,213, or 321

0, otherwise.
ijk

ikj
ikjε

+ =
= − =



 (2.89) 

Using Eq. (2.88), we can write the i-component of Eq. (2.87) as follows 

 ( ) ( ) ( )j
mech em i ijk j lk ijk j lk ijk lk ilk lki

jk l jkl jkl lkl l l

xd x T x T T T
dt x x x

ε ε ε ε
∂∂ ∂  + = = − = ∇ ⋅ × − ∂ ∂ ∂∑ ∑ ∑ ∑ ∑l l r T



. (2.90) 

This last term in this equation is zero because Tkl is symmetric.  Finally, we then obtain  

 ( )mech em
d
dt

+ = ∇ ⋅l l  , (2.91) 

which represents a local conservation of angular momentum. In the absence of mechanical momentum, 
Eq. (2.91) becomes the continuity equation for angular momentum density. We note that symmetry of the 
Maxwell’s stress tensor is required by the local conservation of angular momentum. 
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Example: Angular momentum of a long solenoid 
Imagine a very long solenoid with radius R, n turns per unit length, and current I. Coaxial with the 
solenoid are two long cylindrical (nonconducting) shells of length l—one, inside the solenoid at radius a, 
carries a charge +Q, uniformly distributed over its surface; the other, outside the solenoid at radius b, 
carries charge −Q (Fig. 2.6). What happens with the shells when the current is gradually reduced? 

Fig. 2.6 

When the current is switched off the shells start to rotate due to transfer of the angular momentum stored 
in the electromagnetic field to their mechanical momentum. This can be seen from the following 
considerations. Before the current was switched off, there was an electric field, 

 
0

ˆ ( )
2

Q a s b
lsπε

= < <E s , (2.92) 

in the region between the cylinders, and a magnetic field, 

 0 ˆ ( )nI s Rµ= <B z , (2.93) 

inside the solenoid. The momentum density was therefore 

 0
0

ˆ
2em

nIQ
ls

µ
ε

π
= × = −p E B φ , (2.94) 

in the region a < s < R. The angular momentum density was 

 0 ˆ
2em em
nIQ

l
µ
π

= × = −l r p z , (2.95) 

which is constant (independent of s). To obtain the total angular momentum in the fields, we simply 
multiply by the volume, 2 2( )R a lπ − : 

 2 2
0

1 ˆ( )
2em nIQ R aµ= − −L z . (2.96) 

When the current is turned off, the changing magnetic field induces a circumferential electric field, given 
by Faraday’s law: 
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2

0

0

1 ˆ ,
2
1 ˆ ,
2

,

.

dI Rn s
dt s
dIn s s
dt

R

R

µ

µ


− >= 
− <


E
φ

φ
 (2.97) 

Thus, the torque on the outer cylinder is 

 2
0

1 ˆ( )
2b

dIQ nQR
dt

µ= × − =r E z . (2.98) 

It picks up an angular momentum 

 
0

2 2
0 0

1 1ˆ ˆ
2 2b

I

dInQR dt nIQR
dt

µ µ= = −∫L z z . (2.99) 

Similarly, the torque on the inner cylinder is 

 2
0

1 ˆ
2a

dInQa
dt

µ= − z , (2.100) 

and its angular momentum increase is 

 2
0

1 ˆ
2b nIQaµ=L z . (2.101) 

We obtain therefore: Lem = La + Lb. The angular momentum lost by the fields is precisely equal to the 
angular momentum gained by the cylinders, and the total angular momentum (fields plus matter) is 
conserved. 


