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 Section 8: Electronic Transport 
Drude model 

The simplest treatment of the electrical conductivity was given by Drude. There are four major 
assumptions within the Drude model.  

1. Electrons are treated as classical particles within a free-electron approximation. Thus, in the 
absence of external electromagnetic fields each electron is taken to move uniformly in a straight 
line, neglecting the interactions with other electrons and ions. In the presence of external fields each 
electron is taken to move according to Newton's laws of motion.  

2. Electrons move free only between collisions with scattering centers. Collisions, as in kinetic 
theory, are instantaneous events that abruptly alter the velocity of an electron. Drude attributed 
them to the electrons scattering by ion cores. However, as we will see later, this is not a correct 
picture of electron scattering on ordered periodic structures. A particular type of scattering centers 
does not matter in the Drude model. An understanding of metallic conduction can be achieved by 
simply assuming that there is some scattering mechanism, without inquiring too closely into just 
what that mechanism might be.     

 

         

 

 

Fig.1 Trajectory of a conduction electron scattering off the ions, according to the picture of Drude. 

 

3. An electron experiences a collision, resulting in an abrupt change in its velocity, with a 
probability per unit time 1/τ. This implies that the probability of an electron undergoing a collision 
in any infinitesimal time interval of length dt is just dt/τ. The time τ is therefore an average time 
between the two consecutive scattering events. It known as, the collision time (relaxation time), it 
plays a fundamental role in the theory of metallic conduction. It follows from this assumption that 
an electron picked at random at a given moment will, on the average, travel for a time τ before its 
next collision. The relaxation time τ is taken to be independent of an electron's position and 
velocity.  

4. Electrons are assumed to achieve thermal equilibrium with their surroundings only through 
collisions. These collisions are assumed to maintain local thermo-dynamic equilibrium in a 
particularly simple way: immediately after each collision an electron is taken to emerge with a 
velocity that is not related to its velocity just before the collision, but randomly directed and with a 
speed appropriate to the temperature prevailing at the place where the collision occurred.  

Now we consider the application of the Drude model for electrical conductivity in a metal. 

According to Ohm's law, the current I flowing in a wire is proportional to the potential drop 
V=V2−V1 along the wire: V = IR, where R, the resistance of the wire, depends on its dimensions. It 
is much more convenient to express the Ohm's law in a form which is independent of the 
dimensions of the wire because these factors are irrelevant to the basic physics of the conduction. 
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Fig.2 

 

We define the conductivity which is the proportionality constant between the current density j and 
the electric field E at a point in the metal: 

σ=j
�

 (1) 

The current density j is a vector, parallel to the flow of charge, whose magnitude is the amount of 
charge per unit time crossing a unit area perpendicular to the flow. Thus if a uniform current I flows 
through a wire of length L and cross-sectional area A, the current density will be j = I/A. Since the 
potential drop along the wire will be V = EL, Eq. (1) gives I/A=σV/L, and hence R = L/σA =ρL/A, 
where we introduced resistivity ρ=1/σ. Unlike R, σ and ρ, is a property of the material, since it does 
not depend on the shape and size. 

Now we want to express σ is terms of the microscopic properties using the Drude model. If n 
electrons per unit volume all move with velocity v, then the current density they give rise to will be 
parallel to v. Furthermore, in a time dt the electrons will advance by a distance vdt in the direction 
of v, so that n(vdt)A electrons will cross an area A perpendicular to the direction of flow. Since each 
electron carries a charge -e, the charge crossing A in the time dt will be -nevAdt, and hence the 
current density is 

ne= −j v . (2) 

At any point in a metal, electrons are always moving in a variety of directions with a variety of 
thermal energies. The net current density is thus given by Eq.(2), where v is the average electronic 
velocity or drift velocity. In the absence of an electric field, electrons are as likely to be moving in 
any one direction as in any other, v averages to zero, and, as expected, there is no net electric 
current density. In the presence of a field E, however, there will be a drift velocity directed opposite 
to the field (the electronic charge being negative), which we can compute as follows. 

Consider a typical electron at time zero. Let t be the time elapsed since its last collision. Its velocity 
at time zero will be its velocity v0 immediately after that collision plus the additional velocity 
−eEt/m it has subsequently acquired. Since we assume that an electron emerges from a collision in a 
random direction, there will be no contribution from v0 to the average electronic velocity, which 
must therefore be given entirely by the average of −eEt/m. However, the average of t is the 
relaxation time τ. Therefore 

e

m

τ= − E
v , (3) 

2ne

m

τ= −j E . (4) 

The conductivity is, therefore, given by   

2ne

m

τσ =  (5) 

L 

A 

V2 V1 I  
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We see that the conductivity is proportional to the density of electrons, which is not surprising since 
the higher the number of carriers, the more the current density. The conductivity is inversely 
proportional to the mass because the mass determine the acceleration of an electron in electric field. 
The proportionality to τ follows because τ is the time between two consecutive collisions. 
Therefore, the larger τ is, the more time for electron to be accelerated between the collisions and 
consequently the larger the drift velocity. 

The values of relaxation time can be obtained from the measured values of electrical conductivity. 
For example at room temperature the resistivity of many metals lies in the range of 1-10 µΩcm.  
The corresponding relaxation time is of the order of 10-14s.  

In this discussion of electrical conductivity we treated electrons on a classical basis. How are the 
results modified when the quantum mechanics is taken into account? Let us refer to Fig.3. In the 
absence of an electric field, the Fermi sphere is cantered at the origin (Fig. 3a). The various 
electrons are all moving - some at very high speeds - and they carry individual currents. But the 
total current of the system is zero, because, for every electron at velocity v there exists another 
electron with velocity -v, and the sum of their two currents is zero. Thus the total current vanishes 
due to pair wise cancellation of the electron currents. 

 
Fig. 3  (a) The Fermi sphere at equilibrium,   (b) Displacement of the Fermi sphere due to an electric field. 

The situation changes when a field is applied. If the field is in the positive x-direction, each electron 
acquires a drift velocity, as given by Eq.(3). Thus the whole Fermi sphere is displaced to the left, as 
shown in Fig.3(b). Although the displacement is very small, and although the great majority of the 
electrons still cancel each other pairwise, some electrons - in the shaded crescent in the figure - 
remain uncompensated. It is these electrons which produce the observed current. 

The very small displacement is due to a relatively small drift velocity. If we assume that the electric 
field is 0.1V/cm, we obtain the drift velocity of 1cm/s, which is by 8 orders in magnitude smaller the 
Fermi velocity of electrons.  

Let us estimate the current density: The fraction of electrons which remain uncompensated is 
approximately v/vF. The concentration of these electrons is therefore n(v/vF), and since each electron 
has a velocity of approximately vF, the current density is given by 

(v / v )v vF Fj en ne= − = − . (6) 
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This is the same expression we obtained before. Therefore, formally the conductivity is expressed by 
the same formula (5).  However, the actual picture of electrical conduction is thus quite different 
from the classical one. In the classical picture, we assumed that the current is carried equally by all 
electrons, each moving with a very small drift velocity v. In the quantum-mechanical picture the 
current is carried only by very small fraction of electrons, all moving with the Fermi velocity. The 
relaxation time is determined only by electrons at the Fermi surface, because only these electrons can 
contribute to the transport properties. Both approaches lead to the same result, but the latter is 
conceptually the more accurate.  

Since only electrons at the Fermi surface contribute to the conductance, we can define the mean free 
path of electrons as l=τvF. We can make an estimate of the mean free path for metal at room 
temperature. This estimate gives a value of 100Å. So it is of the order of a few tens interatomic 
distances. At low temperatures for very pure metals the mean free path can be made as high as a few 
cm.  

The origin of collision time 

We see that between two collisions, the electron travels a distance of more than 20 times the 
interatomic distance. This is much larger than one would expect if the electron really did collide 
with the ions whenever it passed them. This paradox can be explained only using quantum concepts 
according to which an electron has a wave character. It is well known from the theory of wave 
propagation in periodic structures that, when a wave passes through a periodic lattice, it continues 
propagating indefinitely without scattering. The effect of the atoms in the lattice is to absorb energy 
from the wave and radiate it back, so that the net result is that the wave continues without 
modification in either direction or intensity.  

Therefore we see that, if the ions form a perfect lattice, there is no collision at all - that is, l= ∞ - and 
hence τ = ∞, which in turn leads to infinite conductivity. It has been shown, however, that the 
observed l is about 102 A. The finiteness of σ must thus be due to the deviation of the lattice from 
perfect periodicity; this happens either because of (1) thermal vibration of the ions, or because of 
(2) the presence of imperfections or foreign impurities. 

 
Fig. 4   The normalized resistivity ρ(T)/ρ(290°K) versus T for Na in the low-temperature region (a), and at higher 
temperatures (b). ρ (290°K) ~ 2µΩcm. 
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In order to consider their contribution we examine the temperature dependence of the electrical 
conductivity. The electrical conductivity of a metal varies with temperature in a characteristic 
manner. This variation is usually discussed in terms of the behavior of the resistivity ρ versus T. 
Figure 4 shows the observed curve for Na. At T ~ 0°K, ρ has a small constant value; above that, ρ 
increases with T, slowly at first, but afterward ρ increases linearly with T. The linear behavior 
continues essentially until the melting point is reached. This pattern is followed by most metals, and 
usually room temperature falls into the linear range.  

We want to explain this behavior of in terms of the Drude formula. Recalling that 1ρ σ −= , we have 

2

m

ne
ρ

τ
= . (7) 

As we have discussed earlier 1/τ which enters equation (7), is the probability of the electron 
scattering per unit time. Thus, if τ = 10-14s, then the electron undergoes 1014 collisions in one 
second. We found that the electron undergoes collisions only because the lattice is not perfectly 
regular. We group the deviations from a perfect lattice into two classes. 

a) Lattice vibrations (phonons) of the ions around their equilibrium position due to thermal 
excitation of the ions. 

b) All static imperfections, such as impurities or crystal defects. Of this latter group we shall take  
impurities as an example.  

The total probability for an electron to be scattered in a unit time is the sum of the probabilities of 
scattering by phonons and by impurities. This is because these two mechanisms are assumed to act 
independently. Therefore we may write 

1 1 1

i phτ τ τ
= +  (8) 

where the first term on the right is due to impurities and the second is due to phonons. The 
scattering by impurities is essentially independent of temperature, whereas the scattering by 
phonons is temperature dependent because the number of phonons increases with temperature.  
When (8) is substituted into (7), we readily find 

2 2i ph
i ph

m m

ne ne
ρ ρ ρ

τ τ
= + = +  (9) 

We see that ρ has split into two terms. A term ρi due to scattering by impurities, which is 
independent of T, is called the residual resistivity. Another term, ρph(T), is due to scattering by 
phonons; hence it is temperature dependent. Sometimes it is called the lattice resistivity.  

At very low T, scattering by phonons is negligible because the amplitudes of oscillation are very 
small; in that region τph -> ∞, ρph -> 0, and hence ρ = ρi is a constant. This is in agreement with 
Fig.4. As T increases, scattering by phonons becomes more effective, and ρph(T) increases; this is 
why ρ increases. When T becomes sufficiently large, scattering by phonons dominates and ρ ~ 
ρph(T). The statement that ρ can be split into two parts, is known as the Matthiessen rule. This rule 
is embodied in (9).  
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In general, the Matthiessen rule predicts that if there are two distinguishable sources of scattering 
(like in the case above – phonons and impurities) the resistivity is the sum of the resistivities due to 
the first and the second mechanism of scattering. The Mathissen rule is sort of empirical 
observation which can be used for a qualitative understanding of the contribution from different 
scattering mechanisms. However, one must always bear in mind the possibility a failure of this rule. 
In particular, in the case when the relaxation time depends on the wavevector k, the Matthissen rule 
becomes invalid.       

Now let us derive approximate expressions for τi and τph using arguments from the kinetic theory of 
gases. Consider first the collision of electrons with impurities. We write 

v
i

i
F

lτ = , (10) 

where l i is the mean free path for collision with impurities. In order to find the mean free path we 
shall assume, for simplicity, that the collision is of the hard-spheres (billiard-ball) type and 
introduce the scattering cross section of an impurity Σi , which is the area an impurity atom presents 
to the incident electron. Then, we can argue that the product of the mean free path and the cross 
section of impurity, l iΣi , is equal to the average volume per impurity, 1/ni, where ni is the impurity 
concentration, i.e.  

1
i i

i

l
n

Σ = , (11) 

and therefore 

1
i

i i

l
n

=
Σ

. (12) 

The scattering cross section Σi is of the same magnitude as the actual geometrical area of the 
impurity atom. That is, that Σi ~ lÅ2. Calculations of the exact value of Σi require quantum scattering 
theory. By substituting Eqs. (12) and (10) into (9), we find  

2

vF
i i i

m
n

ne
ρ = Σ . (13) 

As expected, ρi is proportional to ni the concentration of impurities. 

Calculating ρph is much more difficult, but equations similar to (10) and (12) still hold. In particular, 
one may write 

1
ph

a a

l
n

=
Σ

, (14) 

where na is the concentration of the host atoms in the lattice, and Σa is the scattering cross section 
per atom. We should note here that Σa has no relation to the geometrical cross section of the atom. 
Rather it is the area presented by the thermally fluctuating atom to the passing electron. Suppose 
that the distance of deviation from equilibrium is x, then the average scattering cross section is  
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2
a xΣ ∝ , (15) 

where <x2> is the average of x2. We can easily estimate this value at high temperatures, when the 
classical approach is valid. Since the ion is a harmonic oscillator, the value <x2> is proportional to 
the average of its potential energy is equal to half the total energy. Thus, 

2

2
B

a

k
x T

C
Σ ∝ ∝ , (16) 

where C is interatomic force constant introduced earlier and we used the formula for the energy of a 
classical oscillator. We see therefore that at high temperatures the resistivity is linear in T,  

2

v

2
F a B

ph

m n k
T

ne C
ρ ∝ . (17) 

which is in agreement with experiment. 

In the low-temperature range the lattice resistivity varies with temperature in a different way. Using 
the Debye model at low temperature range one can find that ρph ~T5.  

Thermal conductivity  

When the ends of a metallic wire are at different temperatures, heat flows from the hot to the cold 
end. The basic experimental fact is that the heat current density, jQ, i.e. the amount of thermal 
energy crossing a unit area per unit time is proportional to the temperature gradient, 

Q

dT
j K

dx
= −  (18) 

where K is the thermal conductivity. In insulators, heat is carried entirely by phonons, but in metals 
heat may be transported by both electrons and phonons. The thermal conductivity K is therefore 
equal to the sum of the two contributions, 

e phK K K= +  (19) 

where Ke and Kph refer to electrons and phonons, respectively. In most metals, the contribution of 
the electrons greatly exceeds that of the phonons, because of the great concentration of electrons. 
Typically Ke ~ 102 Kph. 

 
Fig. 5 The physical basis for thermal conductivity. Energetic electrons on the left carry net energy to the right. 

The physical process by which heat conduction takes place via electrons is illustrated in Fig.5. 
Electrons at the hot end (to the left) travel in all directions, but a certain fraction travel to the right 
and carry energy to the cold end. Similarly, a certain fraction of the electrons at the cold end (on the 



Physics 927 
E.Y.Tsymbal  

 8 

right) travel to the left, and carry energy to the hot end. Since on the average electrons at the hot 
end are more energetic than those on the right, a net energy is transported to the right, resulting in a 
current of heat. Note that heat is transported entirely by electrons having the Fermi energy, because 
those well below this energy cancel each other's contributions.  

To evaluate the thermal conductivity K quantitatively, we use the formula K = 1/3CelvFl, where Cel 
is the electronic specific heat per unit volume, v is the Fermi velocity of electrons, l is the mean free 
path of electrons at the Fermi energy. Using expression for the heat capacity derived earlier, we find   

221
v

3 2
B

F
F

k T
K n l

E

π� �
= � �

� �
. (20) 

Noting that 2½ vF FE m=  and that / vFl τ= ,  we can simplify this expression for K to 

2 2

3
Bnk T

K
m

π τ= , (21) 

which expresses thermal conductivity in terms of the electronic properties of the metal.  

Many of the parameters appearing in the expression for K were also included in the expression for 
electrical conductivityσ. Recalling that σ = ne2τ/m, we find 

2
1

3
BkK

T LT
e

π
σ

� �= =� �
� �

 (22) 

We see from here that the ratio of the thermal conductivity to the electrical conductivity is directly 
proportional to the temperature. This is called the Wiedemann-Franz law. The constant of 
proportionality L, which is called the Lorentz number, is independent of the particular metal. It 
depends only on the universal constants kB and e, should be the same for all metals. Its numerical 
value is 2.45⋅10-8 WΩ/K2. This conclusion suggests that the electrical and thermal conductivities are 
intimately related, which is to be expected, since both electrical and thermal current are carried by 
the same agent: electrons.  

Motion in a magnetic field: cyclotron resonance and Hall effect  

The application of a magnetic field to a metal gives rise to several interesting phenomena due to 
conduction electrons. The cyclotron resonance and the Hall effect are two which we consider.   

Cyclotron resonance 

If a magnetic field is applied to a metal the Lorentz force F = −e[E+(v ×××× B)] acts on each electron. 
For a perfect metal in the absence of electric field the equation of motion takes the form  

d
m e

dt
= − ×v

v � . (23) 

If the magnetic field lies along the z-direction this results in   
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v
v

v
v

x
c y

y
c x

d

dt
d

dt

ω

ω

= −

=
, (24) 

where  

c

eB

m
ω =  (25) 

is the cyclotron frequency in SI system of units (in CGS c

eB

mc
ω = ). For magnetic fields of the order 

of a few kG the cyclotron frequencies lie in the range of a few GHz. For example for B=1kG, the 
cyclotron frequency is / 2 2.8c c GHzν ω π= = . Therefore, the magnetic field causes electrons to 

move in a counterclockwise circular fashion with the cyclotron frequency in a plane normal to the 
field. 

 
Fig. 6  (a) Cyclotron motion,   (b) The absorption coefficient versusω. 

Suppose now that an electromagnetic signal is passed through the slab in a direction parallel to B, 
as shown in figure 6. The electric field of the signal acts on the electrons, and some of the energy 
in the signal is absorbed. The rate of absorption is greatest when the frequency of the signal is 
exactly equal to the frequency of the cyclotron (see Fig.6b), i.e.  

cω ω= . (26) 

This is so because, when this condition holds true, each electron moves synchronously with the 
wave throughout the cycle, and therefore the absorption continues all through the cycle. Thus, 
Eq.(26) is the condition for cyclotron resonance. On the other hand, when Eq.(26) is not satisfied, 
the electron is in phase with the wave through only a part of the cycle, during which time it 
absorbs energy from the wave. In the remainder of the cycle, the electron is out of phase and 
returns energy to the wave.  

Cyclotron resonance is commonly used to measure the electron mass in metals and 
semiconductors. The cyclotron frequency is determined from the absorption curve, and this value 
is then substituted in (25) to evaluate the effective mass. 
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The Hall effect 

First we derive an equation of motion of an electron in applied magnetic and electric field in the 
presence of scattering.  

Assume that that the momentum of an electron is p(t) at time t, let us calculate the momentum per electron 
p(t + dt) an infinitesimal time dt later. An electron taken at random at time t will have a collision before 
time t + dt, with probability dt/τ, and will therefore survive to time t + dt without suffering a collision 
with probability 1− dt/τ. If it experiences no collision, however, it simply evolves under the influence of 
the force F (due to the spatially uniform electric and/or magnetic fields) and will therefore acquire an 
additional momentum Fdt . The contribution of all those electrons that do not collide between t and t + dt 
to the momentum per electron at time t + dt is the fraction (1 − dt/τ) they constitute of all electrons, times 
their average momentum per electron, p(t) + Fdt.  

Thus neglecting for the moment the contribution to p(t + dt) from those electrons that  do undergo a 
collision in the time between t and t + dt, we have  

( )( ) 1 ( )
dt

t dt t dt
τ

� �+ = − +� �
� �

p p F , (27) 

Note that if the force is not the same for every electron it should be averaged.  

The correction to (27) due to those electrons that have had a collision in the interval t to t  + dt i s only 
of the order of (dt)2. To see this, first note that such electrons constitute a fraction dt/τ of the total number of 
electrons. Furthermore, since the electronic velocity (and momentum) is randomly directed immediately 
after a collision, each such electron will contribute to the average momentum p(t + dt) only to the 
extent that it has acquired momentum from the force F since its last collision. Such momentum is 
acquired over a time no longer than dt, and is therefore of order Fdt. Thus the correction to (27) is of 
order (dt/τ)Fdt, and does not affect the terms of linear order in dt. We may therefore write: 

( ) ( ) ( )t dt t d t

dt dt τ
+ − = = −p p p p

F . (28) 

This simply states that the effect of individual electron collisions is to introduce a frictional damping 
term into the equation of motion for the momentum per electron. We apply this equation to discuss the 
Hall effect in metals using a free electron model.   

The physical process underlying the Hall effect is illustrated in Fig.7. Suppose that an electric 
current Jx is flowing in a wire in the x-direction, and a magnetic field Bz is applied normal to the 
wire in the z-direction. We shall show that this leads to an additional electric field, normal to both 
Jx and Bz, that is, in the y-direction. 

Before the magnetic field is applied, there is an electric current flowing in the positive x-
direction, which means that the conduction electrons are drifting with a velocity v in the negative 
x-direction. When the magnetic field is applied, the Lorentz force F = −e(v ×××× B) causes the 
electrons to bend downward, as shown in the figure. As a result, electrons accumulate on the 
lower surface, producing a net negative charge there. Simultaneously a net positive charge 
appears on the upper surface, because of the deficiency of electrons there. This combination of 
positive and negative surface charges creates a downward electric field EH, which is called the Hall 
field. 
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Fig. 7   Origin of the Hall field and Hall effect. 

Let us evaluate this Hall field. We start from the Lorentz force acting on each electron F = −e[E+(v ×××× 
B)]. According to (28) we find  

[ ]d
m e m

dt τ
= − + × −v v

E v B , (29) 

where τ is the relaxation time. Note that the Lorentz force is not the same for all electrons because 
they move with different velocities, therefore it is averaged over ensemble. We are looking for the 
solution of this equation in the steady state when the current is independent of time and therefore 
dv/dt=0. 

v
0 v

v
0 v

x
x y

y
y x

eE eB m

eE eB m

τ

τ

= − − −

= − + −
, (30) 

We multiply these equations by −neτ/m to introduce current densities components jx = -envx and jy = -
envy, so that  

x c y x

y c x y

E j j

E j j

σ ω τ
σ ω τ

= +

= − +
, (31) 

where σ is the Drude conductivity in the absence of a magnetic field. In the steady state there is no electric 
current flowing perpendicular to the wire. Therefore the Hall field EH=Ey can be determined by the 
requirement that there be no transverse current jy. Setting jy to zero in the second equation of (31) we 
find that 

1c
y x xE j j B

ne

ω τ
σ

� �= − = −� �
� �

, (32) 

The proportionality constant 1/ ne− , is known as the Hall constant, and is usually denoted by RH.. 
Therefore, 

1
HR

ne
= − . (33) 
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This is a very striking result, which predicts that the Hall coefficient depends on no parameters of the 
metal except the density of carriers. Since RH is inversely proportional to the electron concentration n, 
it follows that we can determine n by measuring the Hall field. Since we have already calculated n 
assuming that the atomic valence electrons become the metallic conduction electrons, a measurement of 
the Hall constant provides a direct test of the validity of this assumption. 

Some Hall coefficients are listed in a table. Note the occurrence of cases in which RH is actually positive, 
apparently corresponding to carriers with a positive charge.  

METAL 
 

VALENCE 
 

- 1/RHne 
 Li 1 0.8 

Na 1 1.2 
K 1 1.1 
Rb 1 1.0 
Cs 1 0.9 
Cu 1 1.5 
Ag 1 1.3 
Au 1 1.5 
Be 2 -0.2 
Mg 2 -0.4 
In 3 -0.3 
Al 
 

3 
 

-0.3 
  

Table. Hall coefficients of selected elements. Evidently the alkali metals obey the Drude result reasonably well, the 
noble metals (Cu, Ag, Au) less well, and the remaining entries, not at all. 

 

It is found experimentally that the experimental values for sodium and potassium are in excellent 
agreement with values calculated for one conduction electron per atom. However, for some metals 
the experimental values strongly disagree with the predictions of the free electron model. For 
example, for aluminum experiment shows that there is one positive carrier per atom, rather then three 
negative, as we would expect assuming the free electron model and taking into account three valence 
electrons. This disagreement can be explained using a band theory of solids.   

 


